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State-Space Models

The state-space form of time series models has received
considerable attention, as they can better represent the actual
dynamics of a data generation process.

Let yt denote the observation from a (possibly multivariate) time
series at time t, related to a vector αt , called the state vector,
which is possibly unobserved and whose dimension, m say, is
independent of the dimension, n, of yt .
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The general form of a linear state-space model, is given by the
following two equations

yt = Ztαt + dt + Gtεt , t = 1, . . . ,T (1a)

αt+1 = Ttαt + ct + Htεt . (1b)

Equation (1a) is the observation or measurement equation, while
(1b) is transition equation.
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In (1)

I Zt is an (n ×m) matrix,

I dt is an (n × 1) vector,

I Gt an (n × (n + m)) matrix,

I Tt is (m ×m), ct is (m × 1) and

I Ht is an (m × (n + m)) matrix.

All of the latter matrices are referred to as the system matrices and
are assumed to be non-stochastic.
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Process εt is an ((n + m)× 1) vector of serially independent,
identically distributed disturbances with E (εt) = 0 and
Var (εt) = I, the identity matrix.

The formulation is completed by the assumption that the initial
state vector α1 is independent of εt at all times t and has
unconditional mean and variance a1|0 and P1|0 respectively.
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The state-space model is characterized by the properties that the
system matrices, the disturbance terms εt and initial state vector
α1 possess. If the system matrices do not evolve with time, the
state-space model is called time-invariant or time-homogeneous.

If the disturbances, εt , and initial state vector, α1, are assumed to
have a normal distribution, then the model is termed Gaussian.

Finally, it should be noted that if GtH
′
t = 0 for all t, then the

measurement and transition equations are uncorrelated.
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Example

AR(2) Model Let {Xt} be a zero-mean, Gaussian AR(2) process
given by

Xt+1 = φ1Xt + φ2Xt−1 + u2t

where u2t ∼ NID
(
0, σ2

2

)
. Suppose also that we observe the

process with noise, so that

Yt = Xt + u1t

with u1t ∼ NID
(
0, σ2

1

)
and independent of u2t .
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Example

A state-space representation of this model can be formed as follows

Yt =
[

1 0
] [ Xt

Xt−1

]
+
[

σ2
1 0

] [ ε1t

ε2t

]
[

Xt+1

Xt

]
=

[
φ1 φ2

1 0

] [
Xt

Xt−1

]
+

[
0 σ2

2

0 0

] [
ε1t

ε2t

]
where εt = (ε1t , ε2t)

′ is NID (0, I). Clearly the latter state-space
model is time-homogeneous and Gaussian and the measurement
and transition equations are uncorrelated.
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Kalman Filter

The Kalman filter is used for prediction, filtering and smoothing.
In particular, if we let Ψt denote the information set up to time t,
i.e. Ψt = {y1, . . . , yt}, then the problem of prediction is to
compute E (αt+1|Ψt).

Filtering is concerned with calculating E (αt |Ψt), while
(fixed-interval) smoothing is concerned with estimating
E (αt |ΨT ), for all t < T .

The Kalman filter consists of a set of simple recursions that
compute the latter quantities.
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Linear Gaussian State-Space Model : Assume that

GtH
′
t = 0

Moreover, we drop the (exogenous) terms dt and ct from the
observation and transition equations for simplicity and write

GtG
′
t = Σt

and
HtH

′
t = Ωt .
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The Kalman filter recursively computes the quantities

I at|t = E (αt |Ψt),

I at+1|t = E (αt+1|Ψt),

I Pt|t = MSE (αt |Ψt−1),

I Pt+1|t = MSE (αt+1|Ψt).

where MSE is the mean-square error or one-step ahead prediction
variance.



Session 6: State-space Models & Filtering 12/ 85

Then, starting with a1|0 and P1|0, at|t , at+1|t and their MSEs are
obtained by running for t = 1, . . . ,T , the recursions

vt = yt − Ztat|t−1 , Ft = ZtPt|t−1Z
′
t + Σt (2a)

at|t = at|t−1 + Pt|t−1Z
′
tF

−1
t vt , (2b)

Pt|t = Pt|t−1 − Pt|t−1Z
′
tF

−1
t ZtPt|t−1, (2c)

at+1|t = Ttat|t , (2d)

Pt+1|t = TtPt|tT
′
t + Ωt . (2e)
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Notes:

I quantities vt and Ft in (2a) respectively denote the
one-step-ahead error in forecasting yt conditional on the
information set at time t − 1 and its MSE. This facilitates
computation of the likelihood function.

I the quantities at|t and at|t−1 are optimal estimators of αt

conditional on the available information, in terms of minimum
mean square.

I the latter property holds under Gaussianity; if this is not
assumed, at|t and at|t−1 are optimal only within the class of
linear estimators, that is, they are the minimum mean square
linear estimators of αt conditional on Ψt and Ψt−1.
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I Finally, equations (2b) and (2d ) can be combined together to
yield recursions that only compute the one-step-ahead
prediction estimates of αt+1 given Ψt .

Similarly, by taking together (2c) and (2e), a single set of
recursions for the MSE is obtained, which goes directly from
Pt|t−1 to Pt+1|t .
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I The resulting recursions, along with (2a), for
t = 1, . . . ,T − 1, are as follows:

at+1|t = Ttat|t−1 + Ktvt (3a)

Kt = TtPt|t−1Z
′
tF

−1
t (3b)

Pt+1|t = TtPt+1|tL
′
t + Ωt (3c)

Lt = Tt − KtZt . (3d)
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Parameter Estimation Another application of the Kalman filter is
the estimation of any unknown parameters θ that appear in the
system matrices.

The likelihood for data y = (y1, . . . , yT ) can be constructed as

p (y1, . . . , yT ) = p (yT |ΨT−1) · · · p (y2|Ψ1) p (y1) =
T∏

t=1

p (yt |Ψt−1) .
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Assuming that the state-space model is Gaussian, by taking
conditional expectations on both sides of the observation equation,
with dt ≡ 0 , we deduce that for t = 1, . . . ,T ,

I E (yt |Ψt−1) = Ztat|t−1,

I Var (yt |Ψt−1) = Ft .

Crucially, the one-step-ahead prediction density p (yt |Ψt−1) is the
density of a multivariate normal random variable with mean
Ztat|t−1 and covariance matrix Ft .
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Thus, the log-likelihood function is given by

log L = −nT

2
log (2π)− 1

2

T∑
t=1

log (det Ft)−
1

2

T∑
t=1

v ′tF
−1
t vt .

where
vt =

(
yt − Ztat|t−1

)
Typically, numerical procedures are used in order to maximize the
log-likelihood to obtain the ML estimates of the parameters θ
which are consistent and asymptotically normal.
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Non-Linear Non-Gaussian State-Space Models : If the
state-space model is not Gaussian, the likelihood can still be
constructed in the same way using the minimum mean square
linear estimators of the state vector.

However, the estimators θ̂ that maximize the likelihood are the
quasi-maximum likelihood (QML) estimators of the parameters. It
can be shown that the QML estimators are also consistent and
asymptotically normal.
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Another algorithm can be applied to a state-space model; given a
fixed set of data, estimates of the state vector are computed at
each time t in the sample period taking into account the full
information set available.

This algorithm computes at|T = E (αt |ΨT ) along with its MSE,
Pt|T , for all t = 1, . . . ,T − 1.
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The latter quantities are computed via a set of backward
recursions and use the quantities at+1|t , at|t and the MSE matrices
Pt|t , Pt+1|t , which are obtained from (2). In particular, to obtain
at|T and Pt|T , we start with aT |T and PT |T and we run backwards
for t = T − 1, . . . , 0

at|T = at|t + P∗t
(
at+1|T − at+1|t

)
Pt|T = Pt|t + P∗t

(
Pt+1|T − Pt+1|t

)
P∗t , P∗t = PtT

′
tPt+1|t .
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Markov chain Monte Carlo Applications

During the last decade, the extensive use of the MCMC, in
particular the Gibbs sampler, has given rise to another smoothing
algorithm called the simulation smoother and is also closely related
to the Kalman filter.

In contrast, to the fixed interval smoother, which computes the
conditional mean and variance of the state vector at each time t in
the sample, a simulation smoother is used for drawing samples
from the density p (α0, . . . , αT |YT ).
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The first simulation smoother is based on the identity

p (α0, . . . , αT |ΨT ) = p (αT |ΨT )
T−1∏
t=0

p (αt |Ψt , αt+1)

and a draw from p (α0, . . . , αT |ΨT ) is recursively constructed in
terms of αt .
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Starting with a draw α̂T ∼ N
(
αT |T ,PT |T

)
, the main idea is that

for a Gaussian state space model p (αt |Ψt , αt+1) is a multivariate
normal density and hence it is completely characterized by its first
and second moments. In order to compute these moments, the
usual Kalman filter recursions (2) are run, so that αt|t is initially
obtained. Then, the draw α̂t+1 ∼ p (αt+1|Ψt , αt+2) is treated as
m additional observations and a second set of m Kalman filter
recursions is run for each element of the state vector α̂t+1.
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However, the latter procedure involves the inversion of system
matrices, which are not necessarily non-singular. To overcome this
problem another simulation smoother algorithm has been devised
which is computationally more efficient.

The main idea of the algorithm is to obtain a sample from the
joint density of the transition equation disturbances, i.e.
p (H0ε0, . . . ,HT εT |ΨT ), by sampling

η̂t ∼ p (Htεt |ΨT ,Ht+1εt+1, . . . ,HT εT ) .



Session 6: State-space Models & Filtering 26/ 85

This allows the state vector to be reconstructed, using the
transition equation (1b) and substituting the simulated
disturbances.

In particular, the new simulation smoother requires only the
prediction equations (3) to be initially run and the quantities vt , Ft

and Lt to be stored. Then, starting with rT = 0 and UT = 0, the
following backward recursions are run for t = T ,T − 1, . . . , 1.

Ct = Ωt − ΩtUtΩt , κt ∼ N (0,Ct) ,

rt−1 = Z ′tF
−1
t vt + L′t

(
rt − UtΩtC

−1
t κt

)
,

Ut−1 = Z ′tF
−1
t Zt + L′t

(
Ut + UtΩtC

−1
t ΩtUt

)
Lt .
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Then, for t = 1, . . . ,T , ηt = Ωtrt + κt is a draw from

p (Htεt |ΨT ,Ht+1εt+1, . . . ,HT εT ) .

For the initial disturbance term, η0 = P1|0r0 + κ0, where
κ0 ∼ N

(
0,P1|0 − P1|0U0P1|0

)
, is a draw from

p (H0ε0|ΨT ,H1ε1, . . . ,HT εT ).

The state vector is simulated by starting with α̂0 = 0 and running
for t = 0, . . . ,T the transition equation recursion with Htεt

substituted by η̂t , i.e. α̂t+1 = Tt α̂t + η̂t .
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Inference in General State-Space Models

To recap, inference goals for state-space models are

I filtering/tracking : estimate state at time t from all
observations up to time t

p(αt |Ψt)

I smoothing : estimate state at time t from all past and
possibly some future observations

p(αt |Ψt+s)

I prediction: estimate state at time t from observations up to a
previous time point t − s

p(αt |Ψt−s)
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The general (first-order Markov) state equation takes the form

αt = f (αt−1, θt−1) + ηt−1

and the general observation equation takes the form

yt = h(αt , θt) + εt .

For simplicity, we assume that the error processes {ηt} and {εt}
are independent.
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The fundamental inference mechanism is Bayesian; we compute
the posterior quantities of interest sequentially in the following
recursive calculation:

I Prediction

p(αt |Ψt−1) =

∫
p(αt |αt−1)p(αt−1|Ψt−1) dαt−1

I Updating

p(αt |Ψt) =
p(yt |αt)p(αt |Ψt−1)

p(yt |Ψt−1)
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The above equations only provide an analytical solution if all
densities in the state and observation equation are Gaussian, and
both the state and the observation equation are linear.

I If these conditions are met, the Kalman filter provides the
optimal Bayesian solution to the tracking problem.

I If these conditions are not met, we require approximations:

I Extended Kalman filter (EKF): requires Gaussian densities,
approximates non-linearities (using a first-order Taylor
expansion)

I Particle filter (PF): approximates non-Gaussian densities and
non-linear equations
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Particle Filter

The particle filter uses Monte Carlo methods, in particular
Importance sampling, to construct the approximations.

We approximate the integral

Ef [g(X )] =

∫
g(x)f (x) dx

by writing

Ef [g(X )] ≡ Ef0

[
f (X )g(X )

f0(X )

]
=

∫
g(x)f (x)

f0(x)
f0(x) dx

for some importance sampling density f0.
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We then approximate the integral by sampling x1, . . . , xN from f0
for large N, then constructing the approximation

ÊfN =
1

N

N∑
i=1

g(xi )f (xi )

f0(xi )
=

1

N

N∑
i=1

wig(xi ),

say, where, if f0 is chosen carefully

ÊfN −→ Ef [g(X )]

as N −→∞
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If the function f is not known exactly, but only up to
proportionality, the same procedure can work if the weights wi are
suitably normalized to sum to one, that is, if above

wi =
f (xi )

f0(xi )

is replaced by

w?
i =

wi

W
W =

n∑
i=1

wi .

as W approximates the integral∫
f (x) dx =

∫
f (x)

f0(x)
f0(x) dx
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Given a non-linear and non-Gaussian state space model, the goal is
to compute the posterior density p(αt |Ψt) at each time t exactly.

At each time point t, perform the following Sequential Importance
Sampling (SIS) procedure:

I Draw random samples (“particles”) from a chosen importance
density that can be sampled directly.

I Compute a normalized weight for each particle

I Approximate the true posterior density at time t by the
weighted sum of the particles.

Given sufficiently large numbers of particles, this IS
characterization converges to the true posterior density.
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In the filtering problem, at time t, we approximate p(αt |Ψt) by

I particles xt = (xt1, . . . , xtN), a sample from some importance
sampling density f0.

I normalized weights w?
t = (w?

t1, . . . ,w
?
tN)

via the discrete distribution

{(w?
ti , xti ), i = 1 . . . , N}
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Two major questions:

I What importance density f0 can or should be chosen?

I How do we compute the weights efficiently, i.e. in a recursive
fashion such that for a given weight w?

ti , we just need a new
observation yt to get an approximation to the posterior
p(αt |Ψt).
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A simple choice for the importance sampling density at time t is
the transition prior, that is

f0(αt |xt−1,Ψt) ≡ p(αt |xt−1)

as then
w?

ti ∝ w?
t−1,ip(yt |x?

ti ).

This procedure works well in general.
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Particle Degeneracy: A problem with sequential importance
sampling is that typically, after a few iterations, all but one particle
have negligible weights. This phenomenon is termed degeneracy.

The degree of degeneracy is represented by the effective sample
size

Nt =

(
N∑

i=1

(w?
ti )

2

)−1

Possible solutions to overcome degeneracy effects:

I brute force: very large N

I optimized choice of importance density

I resampling
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Resampling: Goal is to eliminate particles with small weights and
replace by new particles drawn from the vicinity of particles with
larger weights

I concentrate on particles with large weights

I model important parts of the posterior more precisely

Various efficient algorithms exist for resampling which operate in
O(N) time (e.g. Sampling Importance Resampling (SIR))
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Time-to-Event Data

In many data sets the outcome of interest is the time to an event

I time between trades

I time to a credit default

I time until stock value threshold excedance

I actuarial survival

I warranty exposure to insurance risk
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The distinguishing feature of such data is that at the end of the
follow up period the event may not have be observed, and thus the
occurrence time is censored.

Censoring may occur as

I truncation of study period

I loss to follow up from non-specific cause

I loss to a “competing” event unrelated to the cause of failure
being studied
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Typically, components are installed over a period and followed up
to a fixed date beyond the end of study, and the last components
installed will thus be studied for a shorter period than those
installed first, and will be less likely to undergo failure.

We often can legitimately “re-align” installation times, and work in
relative rather than calendar time.
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Mathematical Notation: The principal difference between
time-to-event analysis and conventional regression is that account
is taken of potential censoring in the response variable

I we may observe some actual responses (survival, failure)
times,

I censored responses where we do not observe an actual failure
but rather only that the failure occurs after a censoring time
(the end of study) – this is called right-censoring

I occasionally, we observe left-censoring or
interval-censoring
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I the response data is thus bivariate (Y ,Z ) where Y is the time
at which the response is measured, and

Z =

{
1 Failure is observed
0 Censored
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I The potential presence of censoring fundamentally changes
how we view the modelling process - previously we have
looked at probability densities and expected responses etc.

I we have previously only dealt with data y for which we need
to specify P [Y = y ]; we now need to think about

I P [Y > y ] for right censoring
I P [Y ≤ y ] for left censoring

I We now take an alternative view, and examine
reliability/survivor and hazard functions.
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Survival In Discrete Time

The probability mass function for response variable Y is fY ,

fY (y) = P [Y = y ] y = 0, 1, 2, ...

The distribution function FY is

FY (y) = P [Y ≤ y ] =

y∑
t=0

fY (t) = P [Y = 0] + . . . + P [Y = y ]

that is a cumulative probability function. Note that the function
FY (y) is a non-decreasing function.
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In conventional regression modelling, the probability contribution
for data point i with response yi is fY (yi ).

For right-censored data with censoring at yi , however, we only
observe the event

Y > yi

that is, death/failure has not occurred before yi time units. This
event has probability

P [Y > yi ] = 1− FY (yi )

This motivates consideration of the survivor (reliability) function

SY (y) = 1− FY (y)

Note that SY (y) is a non-increasing function.
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The likelihood function (via which inference and testing will be
done) is thus  ∏

i :Zi=1

fY (yi )

×

 ∏
i :Zi=0

SY (yi )


that is

LIKELIHOOD FOR UNCENSORED DATA

×
LIKELIHOOD FOR CENSORED DATA

and the role of the predictors can be introduced via the parameters
of fY and FY .
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Let
fY (y) = P [Y = y ] y = 0, 1, 2, ...

define a discrete failure distribution. Then

SY (y) = P [Y > y ] = 1− FY (y) =
∞∑

j=y+1

fY (j)
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Example

Geometric Model For some probability π)

fY (y) = (1− π)y π y = 0, 1, 2, ...

and
SY (y) = (1− π)y+1 y = 0, 1, 2, ...
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The Discrete Hazard Function

As an alternative method of specification, we consider the discrete
hazard function

hY (y) = P [Failure at y |Survival ≥ y ] =
fY (y)

SY (y − 1)

and the integrated hazard

HY (y) =

y∑
t=0

hY (t).
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Thus

fY (y) =


y−1∏
j=0

(1− hY (j))

× hY (y)

and

SY (y) =

y∏
j=0

(1− hY (j))
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Example

Constant Hazard If

fY (y) = (1− π)y π y = 0, 1, 2, ...

then

hY (y) =
(1− π)y π

(1− π)y+1
=

π

1− π

that is, a constant, independent of y .
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The Continuous Time Model

The probability density function for continuous response variable
Y is fY , and the expectation, likelihood function and so on that
are required for regression modelling are formed from fY . The
distribution function FY is

FY (y) = P [Y ≤ y ] =

∫ y

0
fY (t) dt

In conventional regression modelling, the likelihood contribution for
data point i with response yi is fY (yi ). For right-censored data
with censoring at yi , we have again the reliability function

SY (y) = 1− FY (y)
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Continuous Hazards

As a further alternative method of specification, we consider the
continuous hazard function

hY (y) = lim
δy→0

P [Failure in (y , y + δy)|Survival ≥ y ] =
fY (y)

SY (y)

and the integrated hazard

HY (y) =

∫ y

0
hY (t) dt

and it can be shown that

SY (y) = exp {−HY (y)}
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The Kaplan-Meier Curve

The Kaplan-Meier curve (or product-limit estimate) is a
non-parametric estimate of the reliability function; it is a
decreasing step-function, where the downward steps take place at
the times of the failures

The estimated reliability function at the jth failure/censoring time
as

Ŝj =

j∏
i=1

(
1− zi

n − i + 1

)
(4)

Standard errors are also available.
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Construction: Let

I sample size n comprise observed and censored failure times

I 0 < y(1) < y(2) < ... < y(m), be the distinct failure times,
sorted into ascending order

I dj be the number of number of failures observed at time y(j)

I usually dj = 1
I certainly dj ≥ 1 (dj > 1 implies tied failure times)

I nj be the number of patients “at risk” of failure at time t(j),
that is, the number of patients who have failure/censoring
time greater than or equal to t(j).
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Then the observed probability of surviving beyond t(j) (conditional
on having survived that long) is

p̂j =
nj − dj

nj
= 1− q̂j

say, where qj = dj/nj is the estimated conditional probability of
failure at time t(j). Using the chain rule for probabilities, the
estimated probability of surviving at least until time t is

P̂ (t) =
Jt∏

j=1

p̂j =
Jt∏

j=1

(
1−

dj

nj

)
= ŜKM (t) (5)

where Jt = max
{
j : t(j) ≤ t

}
.



Session 6: Time-to-Event Data 60/ 85

Standard Errors: A number of possibilities have been suggested.
Let Pj = P

(
t(j)
)
. Then

I Greenwood’s Formula

s.e.
(
P̂ j

)
= P̂ j

√√√√ j−1∑
i=0

di

ni − di

I Peto’s Formula

s.e.
(
P̂ j

)
= P̂ j

√√√√1− P̂ j

n′j

where n′j is an “adjusted” or “effective” sample size, the
number of survivors at the beginning of the interval(
tj , t(j+1)

)
.
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The Nelson-Aalen Curve

The Nelson-Aalen estimate is a non-parametric estimate of the
cumulative hazard function; it takes the form

Ĥ (t) =
Jt∏

j=1

(
dj

nj

)
(6)

where Jt = max
{
j : t(j) ≤ t

}
. From this, we can construct another

estimate of the reliability function

ŜFH (t) = exp
{
−Ĥ (t)

}
this is the Fleming-Harrington estimate of the reliability
function.
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Standard Errors: If Ĥ j = Ĥ(t(j)), can use

I Greenwood

s.e.
(
Ĥ j

)
=

√√√√ j∑
i=0

di

ni (ni − di )

I Tsiatis

s.e.
(
Ĥ j

)
=

√√√√ j∑
i=0

di

n2
i

I Klein

s.e.
(
Ĥ j

)
=

√√√√ j∑
i=0

di (ni − di )

n3
i
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The Cox Regression Model

The Cox (or Proportional Hazards) model provides a simple way
of introducing exogenous variables into the survival model.

The basic components are a baseline hazard function, h0 and a
linear predictor and (positive) link function g . Then for observed
predictor values X1 = x1, X2 = x2, ...,XK = xK , the hazard
function takes the form

hY (y ; x) = g(xTβ)h0(y)

that is, the hazard is modified in a multiplicative fashion by the
linked-linear predictor. Typically, g is the exponential function.
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From the previously established relationships,

SY (y ; x) = exp

{
−
∫ y

0
hY (t) dt

}
= exp

{
−
∫ y

0
g(xTβ)h0(y) dt

}
If a coefficient βk is positive, the hazard is increased, and the
expected failure time decreased.

The significance of a particular predictor is based on the magnitude
of

t =
β̂

s.e.
(
β̂
)

If |t| > 2, then the hypothesis that β = 0 can be rejected.
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Discrete Time Proportional Modelling: In the discrete time
case, proportional hazards modelling needs to be modified to
respect constraints on the hazards to be probabilities.

Recall that

hY (y) = P [Failure at y |Survival ≥ y ] =
fY (y)

SY (y − 1)

Then, by construction,

0 ≤ hY (y) ≤ 1.

If this hazard is a baseline hazard, and wish to recognize
modification of the hazard by exogenous variables, these
constraints have to be respected.
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Specifically,
hY (y ; x) = g(xTβ)h0(y) ≤ 1

may not be guaranteed after the multiplicative modification by g .

One construction that guarantees the constraints are met is to
model on the transformed scale, that is(

hY (y ; x)

1− hY (y ; x)

)
= g(xTβ)

(
h0(y)

1− h0(y)

)
.

This is the proportional odds model.
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But, for general hazard probabilities h,

h(y)

1− h(y)
=

f (y)/S(y − 1)

1− f (y)/S(y − 1)
=

f (y)

S(y − 1)− f (y)
=

f (y)

S(y)

so proportional odds modelling has a sensible interpretation.
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The Accelerated Life Model

The Accelerated Life model provides another way of introducing
the influence of predictors into the survival model.

The basic components now are a baseline reliability function, S0

and a linear predictor and (positive) link function g .. Then for an
experimental unit with observed predictor values X1 = x1,
X2 = x2, ...,XK = xK , the reliability function takes the form

SY (y ; x) = S0(g(xTβ)y)

that is, the time scale is modified in a multiplicative fashion by the
linked-linear predictor; this allows direct modelling of the influence
of predictors on survival.
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Frailty Modelling

The idea of frailty modelling is to introduce random effects terms
into the linear predictor that appears in the proportional hazards
and accelerated life models. For example, we extend

xT
i β = β0 + β1xi1 + β1xiD + ... + βDxiD

to include a random component that is specific to the individual
observational unit (bond, company etc.) concerned, that is, we
have

xT
i β = β0 + β1xi1 + β1xi2 + ... + βDxiD + Li

where Li is some (usually zero mean) random variable.
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The Log-Rank Test : The log-rank test is a standard test for
significant differences between two (or more) reliability functions
that differ because of the influence of the different levels of a
discrete predictor.

H0 : S1 = S2

H1 : S1 6= S2

It is a non-parametric test based on ranks of samples for the two or
more subgroups.

Asymptotic or exact versions of the test can be carried out.
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Parametric Modelling

It is possible to fit and compare parametric survival models to
such data. Parametric densities, reliability functions, hazards etc.
can be readily used in the formation of a likelihood, potentially
within the proportional hazards/accelerated life framework.

Typical models used are

I Weibull

I Gamma

I Log-Logistic

I Log-Normal

I Pareto
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Weibull : for y > 0,

f (y) =
α

λα yα−1 exp
{
−
(y

λ

)α}
F (y) = 1− exp

{
−
(y

λ

)α}
=⇒ S(y) = exp

{
−
(y

λ

)α}
h(y) =

α

λα yα−1

H(y) =
(y

λ

)α

for parameters α, λ > 0 (the shape and scale parameters
respectively).
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Multivariate Models & Competing Risks

An important generalization extends event time Y to be a vector
quantity, that is, we have say K different aspects of failure, with
random variable Y = (Y1, ...YK ) requiring a joint probability
model.

A model that captures joint structure of time-to-event observations
must respect marginal and conditional coherence requirements,
and if possible, capture a full range of dependency structures.

Typically, such models are difficult to construct.
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Some joint models exist

I Multivariate Exponential

I Multivariate Weibull

I Multivariate Lognormal

I Hougaard etc.
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Some joint models can be constructed

I Copula (latent uniform)

I Latent Multivariate Normal

Typically, inference for these models is quite complex, but can be
achieved using numerical procedures.
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Some models use the idea of a frailty or factor-type structure.

I Y1, . . . ,YK positive random variables, potential censoring,
corresponding to different items (defaultable bonds etc.)

I modelling achieved through hazard rates h1, . . . , hK

I set
hi (t) = h(t) + ηi (t) i = 1, . . . ,K .

I h(t) is some market-level “factor” determining global hazard
rates, induces dependence across the individual items

I ηi (t) is some item specific hazard.
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Another common experimental situation is one of competing
risks; that is, there are K potential causes of failure, but at most
one is observed for each individual in the study. Then the failure
time, T , is defined by

T = min {Y1, ...,YK}
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If the cause of failure, C , is recorded as C = k, we observe

Y1 > t, ...,Yk−1 > t,Yk = t,Yk+1 > t, ...,YK > t

whereas if the observation is censored, we observe

Y1 > t, ...,Yk−1 > t,Yk > t,Yk+1 > t, ...,YK > t

A joint model is again often difficult to construct, and in addition
there are issues to do with identifiability of the “marginal” failure
processes for the components of Y .

i.e. without sufficient data, there are problems in estimating the
models for Y1, ...,YK considered on their own
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Multi-State Modelling

In multi-state modelling, rather than just having the standard
failed/not failed (dead/alive) dichotomy, with

Z =

{
0 Censored
1 Failure is observed

we have an extension to polytomy, where

Z (t) =


0 Censored at time t
1 State 1 at time t
...

...
M State M at time t
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In such a model, we attempt to estimate the probability

πij (ti , tj) = P [State j at time tj |State i at time ti ]

for ti < tj , or rate, λij , of transition from one state to another.

In a discrete time framework, homogeneous Markov Models are
typically used, characterized by a transition matrix P, with (i , j)th

entry πij , independent of t, with

M∑
j=0

πij = 1
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A multi-state process is a random process {Z (t)}t≥0 describing
the state within which the individual lies at time t.

This kind of modelling is very useful for modelling progression to
credit default; different states could correspond to different credit
ratings.
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