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Part III

Session 4: Multiple Time Series
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I Long-memory

I Cointegration

I Vector Autoregression
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Long Memory

Persistence Process {Xt} with acvs {γk}
I exhibits long-memory if the acvs is absolutely divergent∑

k

|γk | = ∞

I exhibits long-range dependence if, ∀a > 0

lim
k→∞

a−k

γk

= 0

that is, the acf is slowly decaying.

I in practice, diagnosed by observing large autocorrelation at
high lags, spectral power near frequency zero.
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Constructing Persistent Processes
Let {Wt} be an i.i.d. Gaussian sequence with variance 1. Let
δ ∈ (−1/2, 1/2).

I write

(1− B)δ =
∞∑

k=0

ck(−δ)(−B)k ck(d) =
Γ(k + d)

Γ(k + 1)Γ(d)

I Set Xt = (1− B)−δWt

I δ = 0 gives i.i.d. sequence; δ = 1 gives random walk.

I −1/2 < δ < 1/2 gives fractional white noise
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Stationarity This fractional differencing yields a process that is

I stationary if δ < 1/2

I long-memory if 0 < δ < 1/2.

I long-range dependent if −1/2 < δ < 1/2.

For k large,

γk ∼
1

k1−2δ
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Seasonal Persistence Similar construction: replace {ck} sequence
by {gk} such that, for some λ0 ∈ (0, 1/2),

Xt = (1− 2 cos(2πλ0)B + B2)−δWt

Recursion for {gk} given by g−1 = 0, g0 = 1 and for k > 0

gk =

(
2

k + 1

)
(δ + k) cos(2πλ0)−

(
2δ + k − 1

k + 1

)
gk−1

but no simple explicit form.

{gk} are coefficients of the Gegenbauer polynomials (see Gray,
Zhang, Woodward (1989), Lapsa(1997)).
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This procedure yields a process {Xt} that has persistence
associated with the frequency λ0, and is stationary

I if δ < 1/2 when λ0 6= 0, or

I if δ < 1/4 when λ0 = 0

SDF has relatively straightforward form

S(f ) =
1

(2 |cos(2πf )− cos(2πλ0)|)2δ

with

S(f ) → 1

(2 |sin(2πλ0)|)2δ

1

|2πf − 2πλ0|2δ
f → λ0
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ACV/ACF less straightforward

σ2
Xγk =

Γ(1− 2δ)
√
π21/2+2δ

{sin(2πλ0)}1/2−2δ[
P

2δ−1/2
k−1/2 (cos(2πλ0)) + (−1)kP

2δ−1/2
k−1/2 (− cos(2πλ0))

]
where Pµ

ν (x) is the associated Legendre function of the first kind.

A recursion formula for Pµ
ν (x) gives the acvs to arbitrary lag.

(ν − µ+ 1)Pµ
ν+1(x) = (2ν + 1)Pµ

ν (x)− (ν + µ)Pµ
ν−1(x)
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Gegenbauer Models Characteristic singularity (pole) in the
spectrum at λ0.
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Example: λ0 = 0.14, δ = 0.4
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Theoretical ACF
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Periodogram
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Periodogram and SDF
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Cointegration

Cointegration can be used to analyze co-movements in raw series
(asset prices, exchange rates or yields).

The modelling strategy allows the detection of stable or stationary
long-run relationships between non-stationary variables.

This allows the underlying relationships between the series to be
discovered, and perhaps may allow forecasting.
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The components of K−vector Xt are said to be cointegrated of
order (d , b), denoted Xt ∼ CI (d , b) if

(a) the components of Xt are I (d) (stationary after d-times
differencing),

(b) there exists a linear combination of Xt , Zt say, where

Zt = αTXt α 6= 0

such that Zt ∼ I (b) for some 0 < b < d . α is termed the
cointegrating vector.
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Two-Step Regression Strategy: Consider, for illustration,
Yt ,Xt = (Xt1, . . . ,XtK )T ∼ I (1).

1. Form the regression model

Yt = α1Xt1 + . . .+ αKXtK + zt

with cointegrating vector

α = (1,−α1, . . . , αK )T

and estimate the parameters in the model (using
OLS/maximum likelihood)

I Engle/Granger demonstrate that the resulting estimators are
consistent.

I Under cointegration, residuals ẑt should be I (0); this can be
tested using Dickey-Fuller procedures.
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2. If ẑt ∼ I (0) is acceptable (the unit root hypothesis is rejected)
then an Error Correction Model (ECM) is specified of the
form (for K = 1)

BYt = ψ0 + γ1ẑt−1 +
I∑

i=1

ψ1iBXt−i +
L∑

l=1

ψ2lBYt−l + ε1t

BXt = ξ0 + γ2ẑt−1 +
I∑

i=1

ξ1iBYt−i +
L∑

l=1

ξ2lBYt−l + ε2t

Again, these models can be estimated using standard
OLS/ML techniques.
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The ECM in the first equation states that changes in the series Yt

are explained by

I the error in the long-run equilibrium from previous time point
(coefficient γ1),

I lagged changes in the Xt series (coefficients ψ1),

I their own history (coefficients ψ2).

γ1 determines the rate of re-adjustment; should have

γ̂1 < 0.
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I Model orders I and L need to be selected; typically start with
I , L large, and drop variables according to t-statistics, or using
model selection criteria

I Can extend to systems of cointegrated variables
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Vector Autoregression

Univariate methods of time series analysis can be extended to
study parallel series.

Data may comprise

I stocks in a sector

I indices

I exchange rates

all which may exhibit evolution in time in some dependent fashion.

One extension is the vector autoregression (VAR)
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A Simple VAR structure Suppose that Yt = (Yt1, . . . ,Ytd)T is a
d-dimensional time series process. A suitable model for Yt takes
the form

Yt = Xtβ +

p∑
i=k

ΦkYt−k + εt

where

I Xtβ is a deterministic component

I Φk is a d × d matrix determining the dependence at lag
k = 1, 2, . . . , p.

I εt is zero mean, i.i.d. vector process with

E [εtε
T
t ] = Σ
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I The resulting process is similar to the univariate AR(p), and is
denoted the VAR(p) model.

I Usually
εt ∼ N(0,Σ)

is a suitable assumption. In this case, the resulting process is
a multivariate Gaussian process.

I Estimation of the model can proceed using the usual
likelihood methods.

I Restrictions on the model are required to preserve stationarity.
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Vector Cointegration/Error Correction Models
The ECM model of the previous section can be extended to cover
the case of vectors of cointegrated variables.

A d × 1 vector process Yt is said to be cointegrated if at least one
non-zero d × 1 vector βi exists such that

βT
i

is (trend) stationary.

If r such linearly independent vectors β1, . . . ,βr exist, then Yt is
cointegrated with rank r , with

β = (β1, . . . ,βr )

the cointegrating matrix.
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VECM:

BYt = µ+ Xtβ + ΦYt−p +

p−1∑
i=1

ΓkBYt−k + εt

where

I

Γk = −(I−Φ1 − . . .−Φi ) i = 1, . . . , p − 1

I

Φ = −(I−Φ1 − . . .−Φp)

with all matrices d × d .
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