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Session 4: Multiple Time Series
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» Long-memory
» Cointegration

» Vector Autoregression



Session 4: Time Series Analysis 2/ 23

Long Memory

Persistence Process {X;} with acvs {7}

» exhibits long-memory if the acvs is absolutely divergent
Z Ykl = o0
k

» exhibits long-range dependence if, Va > 0

—k
. a
lim — =0
k=00 Yk

that is, the acf is slowly decaying.

» in practice, diagnosed by observing large autocorrelation at
high lags, spectral power near frequency zero.
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Constructing Persistent Processes
Let {W;} be an i.i.d. Gaussian sequence with variance 1. Let
e (-1/2,1/2).

> write

Nt M(k+d)
1-B) = —8)(—B)¥ =
> Set X; = (1 — B)"°W,;

» 6 = 0 gives i.i.d. sequence; 6 = 1 gives random walk.

» —1/2 < 0 < 1/2 gives fractional white noise
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Stationarity This fractional differencing yields a process that is

> stationary if § < 1/2
» long-memory if 0 < 6 < 1/2.
» long-range dependent if —1/2 < § < 1/2.

For k large,
1

Tk ™ k120
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Seasonal Persistence Similar construction: replace {cx} sequence
by {gk} such that, for some g € (0,1/2),

Xi = (1 — 2cos(2m o) B + B?) W,

Recursion for {gx} given by g1 = 0,80 = 1 and for k > 0

2 20+ k—1
8k = (/(-1—1) ((S + k) COS(27T)\0) — <k—|—1) Bk—1

but no simple explicit form.

{gk} are coefficients of the Gegenbauer polynomials (see Gray,
Zhang, Woodward (1989), Lapsa(1997)).
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This procedure yields a process {X;} that has persistence
associated with the frequency )\g, and is stationary

> if 0 < 1/2 when Ao # 0, or
> if 0 <1/4 when Ao =0

SDF has relatively straightforward form

1
(2 |cos(27f) — cos(2m )| )20

S(f) =

with
1 1

S(f) — .
(F) = G en@m0))® 2nf — 250

f— X
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ACV/ACEF less straightforward

M(1—26 . _
O%("yk = \/(E21/2+2)5 {S|n(27TA0)}1/2 20
[P0 (cos(2mAo)) + (~1)* P 112(— cos(2mo)

where Pl/(x) is the associated Legendre function of the first kind.

A recursion formula for P/(x) gives the acvs to arbitrary lag.

(v =+ )P (x) = (v + 1)PI(x) — (v + 1) P,_1(x)
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Gegenbauer Models Characteristic singularity (pole) in the
spectrum at Ag.

Q4 Ao =0.14
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Example: \g =0.14, § = 0.4

Data ACF
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Theoretical ACF

ACF
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Periodogram
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Periodogram and SDF
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Cointegration

Cointegration can be used to analyze co-movements in raw series
(asset prices, exchange rates or yields).

The modelling strategy allows the detection of stable or stationary
long-run relationships between non-stationary variables.

This allows the underlying relationships between the series to be
discovered, and perhaps may allow forecasting.
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The components of K—vector X; are said to be cointegrated of
order (d, b), denoted X; ~ CI(d, b) if

(a) the components of X; are /(d) (stationary after d-times
differencing),

(b) there exists a linear combination of X;, Z; say, where
Zt- = aTXt (87 ;é 0

such that Z; ~ I(b) for some 0 < b < d. « is termed the
cointegrating vector.
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Two-Step Regression Strategy: Consider, for illustration,
Yi, Xe = (tha <o ,XtK)T ~ /(1)-

1. Form the regression model
Y =1 X1+ ...+ axXik + 2

with cointegrating vector

o = (1,—041,.. . ,aK)T

and estimate the parameters in the model (using
OLS/maximum likelihood)

15/ 23

» Engle/Granger demonstrate that the resulting estimators are

consistent.

» Under cointegration, residuals 2; should be /(0); this can be

tested using Dickey-Fuller procedures.
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2. If 2 ~ 1(0) is acceptable (the unit root hypothesis is rejected)
then an Error Correction Model (ECM) is specified of the
form (for K = 1)

I L
BY: = Yo+712e-1+ Z V1 BXe—i + Zlbz/BYt—l + et

i=1 I=1

1 L
BX: = &o+722e-1+ Z §1iBYe—i + Z §21BYt—s + €2t
i=1 =1

Again, these models can be estimated using standard
OLS/ML techniques.
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The ECM in the first equation states that changes in the series Y;
are explained by

» the error in the long-run equilibrium from previous time point
(coefficient v;),

> lagged changes in the X; series (coefficients 1)),

» their own history (coefficients 1)5).

v, determines the rate of re-adjustment; should have

A1 < 0.
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» Model orders | and L need to be selected; typically start with
I, L large, and drop variables according to t-statistics, or using
model selection criteria

» Can extend to systems of cointegrated variables
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Vector Autoregression
Univariate methods of time series analysis can be extended to
study parallel series.
Data may comprise

» stocks in a sector
» indices

» exchange rates
all which may exhibit evolution in time in some dependent fashion.

One extension is the vector autoregression (VAR)
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A Simple VAR structure Suppose that Y; = (Yi1,..., Yig)T is a

d-dimensional time series process. A suitable model for Y, takes
the form

P
Y: =X+ Z DY k+ e
i=k
where
» X0 is a deterministic component

> &, is a d X d matrix determining the dependence at lag
k=1,2,....p.

> €; is zero mean, i.i.d. vector process with

Elerel] =X
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» The resulting process is similar to the univariate AR(p), and is
denoted the VAR(p) model.

» Usually
€t ~ N(O, Z)
is a suitable assumption. In this case, the resulting process is
a multivariate Gaussian process.

» Estimation of the model can proceed using the usual
likelihood methods.

» Restrictions on the model are required to preserve stationarity.
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Vector Cointegration/Error Correction Models
The ECM model of the previous section can be extended to cover
the case of vectors of cointegrated variables.

A d x 1 vector process Y; is said to be cointegrated if at least one
non-zero d x 1 vector 3; exists such that

g
is (trend) stationary.
If r such linearly independent vectors 34, ..., 3, exist, then Y is
cointegrated with rank r, with
16 = (617"'7161’)

the cointegrating matrix.
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VECM:
p—1
BY:=p+XB+®Yep+ ) TuBYe i +e
i=1
where
>
I‘k:—(l—{)l—...—q),') fZl,...,p—l
>
P=—(1-®;—...— )

with all matrices d x d.
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