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Long Memory

Persistence Process {Xt} with acvs {γk}
exhibits long-memory if the acvs is absolutely divergent∑

k

|γk | = ∞

exhibits long-range dependence if, ∀a > 0

lim
k→∞

a−k

γk

= 0

that is, the acf is slowly decaying.

in practice, diagnosed by observing large autocorrelation at
high lags, spectral power near frequency zero.

David A. Stephens Statistical Inference and Methods



Long Memory
Cointegration

Vector Autoregressions

Session 4: Multiple Time Series 3/ 23

Constructing Persistent Processes
Let {Wt} be an i.i.d. Gaussian sequence with variance 1. Let
δ ∈ (−1/2, 1/2).

write

(1− B)δ =
∞∑

k=0

ck(−δ)(−B)k ck(d) =
Γ(k + d)

Γ(k + 1)Γ(d)

Set Xt = (1− B)−δWt

δ = 0 gives i.i.d. sequence; δ = 1 gives random walk.

−1/2 < δ < 1/2 gives fractional white noise
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Stationarity This fractional differencing yields a process that is

stationary if δ < 1/2

long-memory if 0 < δ < 1/2.

long-range dependent if −1/2 < δ < 1/2.

For k large,

γk ∼
1

k1−2δ
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Seasonal Persistence Similar construction: replace {ck} sequence
by {gk} such that, for some λ0 ∈ (0, 1/2),

Xt = (1− 2 cos(2πλ0)B + B2)−δWt

Recursion for {gk} given by g−1 = 0, g0 = 1 and for k > 0

gk =

(
2

k + 1

)
(δ + k) cos(2πλ0)−

(
2δ + k − 1

k + 1

)
gk−1

but no simple explicit form.

{gk} are coefficients of the Gegenbauer polynomials (see Gray,
Zhang, Woodward (1989), Lapsa(1997)).
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This procedure yields a process {Xt} that has persistence
associated with the frequency λ0, and is stationary

if δ < 1/2 when λ0 6= 0, or

if δ < 1/4 when λ0 = 0

SDF has relatively straightforward form

S(f ) =
1

(2 |cos(2πf )− cos(2πλ0)|)2δ

with

S(f ) → 1

(2 |sin(2πλ0)|)2δ

1

|2πf − 2πλ0|2δ
f → λ0
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ACV/ACF less straightforward

σ2
Xγk =

Γ(1− 2δ)
√
π21/2+2δ

{sin(2πλ0)}1/2−2δ[
P

2δ−1/2
k−1/2 (cos(2πλ0)) + (−1)kP

2δ−1/2
k−1/2 (− cos(2πλ0))

]
where Pµ

ν (x) is the associated Legendre function of the first kind.

A recursion formula for Pµ
ν (x) gives the acvs to arbitrary lag.

(ν − µ+ 1)Pµ
ν+1(x) = (2ν + 1)Pµ

ν (x)− (ν + µ)Pµ
ν−1(x)
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Gegenbauer Models Characteristic singularity (pole) in the
spectrum at λ0.

0.0 0.1 0.2 0.3 0.4 0.5

−
5

0
5

10
15

20
25

f

S
(f

) 
(d

B
)

0.1
0.2
0.3
0.4

λ0 =0.14

David A. Stephens Statistical Inference and Methods



Long Memory
Cointegration

Vector Autoregressions

Session 4: Multiple Time Series 9/ 23

Example: λ0 = 0.14, δ = 0.4
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Theoretical ACF
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Periodogram
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Periodogram and SDF
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Cointegration

Cointegration can be used to analyze co-movements in raw series
(asset prices, exchange rates or yields).

The modelling strategy allows the detection of stable or stationary
long-run relationships between non-stationary variables.

This allows the underlying relationships between the series to be
discovered, and perhaps may allow forecasting.
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The components of K−vector Xt are said to be cointegrated of
order (d , b), denoted Xt ∼ CI (d , b) if

(a) the components of Xt are I (d) (stationary after d-times
differencing),

(b) there exists a linear combination of Xt , Zt say, where

Zt = αTXt α 6= 0

such that Zt ∼ I (b) for some 0 < b < d . α is termed the
cointegrating vector.
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Two-Step Regression Strategy: Consider, for illustration,
Yt ,Xt = (Xt1, . . . ,XtK )T ∼ I (1).

1. Form the regression model

Yt = α1Xt1 + . . .+ αKXtK + zt

with cointegrating vector

α = (1,−α1, . . . , αK )T

and estimate the parameters in the model (using
OLS/maximum likelihood)

Engle/Granger demonstrate that the resulting estimators are
consistent.
Under cointegration, residuals ẑt should be I (0); this can be
tested using Dickey-Fuller procedures.
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2. If ẑt ∼ I (0) is acceptable (the unit root hypothesis is rejected)
then an Error Correction Model (ECM) is specified of the
form (for K = 1)

BYt = ψ0 + γ1ẑt−1 +
I∑

i=1

ψ1iBXt−i +
L∑

l=1

ψ2lBYt−l + ε1t

BXt = ξ0 + γ2ẑt−1 +
I∑

i=1

ξ1iBYt−i +
L∑

l=1

ξ2lBYt−l + ε2t

Again, these models can be estimated using standard
OLS/ML techniques.
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The ECM in the first equation states that changes in the series Yt

are explained by

the error in the long-run equilibrium from previous time point
(coefficient γ1),

lagged changes in the Xt series (coefficients ψ1),

their own history (coefficients ψ2).

γ1 determines the rate of re-adjustment; should have

γ̂1 < 0.
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Model orders I and L need to be selected; typically start with
I , L large, and drop variables according to t-statistics, or using
model selection criteria

Can extend to systems of cointegrated variables
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Vector Autoregression

Univariate methods of time series analysis can be extended to
study parallel series.

Data may comprise

stocks in a sector

indices

exchange rates

all which may exhibit evolution in time in some dependent fashion.

One extension is the vector autoregression (VAR)
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A Simple VAR structure Suppose that Yt = (Yt1, . . . ,Ytd)T is a
d-dimensional time series process. A suitable model for Yt takes
the form

Yt = Xtβ +

p∑
i=k

ΦkYt−k + εt

where

Xtβ is a deterministic component

Φk is a d × d matrix determining the dependence at lag
k = 1, 2, . . . , p.

εt is zero mean, i.i.d. vector process with

E [εtε
T
t ] = Σ
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The resulting process is similar to the univariate AR(p), and is
denoted the VAR(p) model.

Usually
εt ∼ N(0,Σ)

is a suitable assumption. In this case, the resulting process is
a multivariate Gaussian process.

Estimation of the model can proceed using the usual
likelihood methods.

Restrictions on the model are required to preserve stationarity.
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Vector Cointegration/Error Correction Models
The ECM model of the previous section can be extended to cover
the case of vectors of cointegrated variables.

A d × 1 vector process Yt is said to be cointegrated if at least one
non-zero d × 1 vector βi exists such that

βT
i

is (trend) stationary.

If r such linearly independent vectors β1, . . . ,βr exist, then Yt is
cointegrated with rank r , with

β = (β1, . . . ,βr )

the cointegrating matrix.
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VECM:

BYt = µ+ Xtβ + ΦYt−p +

p−1∑
i=1

ΓkBYt−k + εt

where

Γk = −(I−Φ1 − . . .−Φi ) i = 1, . . . , p − 1

Φ = −(I−Φ1 − . . .−Φp)

with all matrices d × d .
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