Statistical Inference and Methods

David A. Stephens

Department of Mathematics Imperial College London

d.stephens@imperial.ac.uk
http://stats.ma.ic.ac.uk/~das01/

10th January 2006

Part III

Session 3: Time Series Analysis

David A. Stephens Statistical Inference and Methods

< □ > < 同 > < 三 >

э

э

Session 3: Time Series Analysis

1/ 171

- Exploratory Analysis
- Time Domain Models
- Frequency Domain modelling
- Inference and Estimation
- Non stationarity/Unit Roots

Session 3: Time Series Analysis

Time series analysis is a branch of **applied stochastic processes**. We start with an indexed family of **random variables**

 $\{X_t: t\in T\}$

where t is the index, here taken to be time (but it could be space). T is called the index set. We have a state space of values of X.

In addition X could be **univariate** or **multivariate**. We shall concentrate on discrete time. Samples are taken at equal intervals. We wish to use time series analysis to characterize time series and understand structure.

Session 3: Time Series Analysis

æ

<ロト <部ト < 注ト < 注ト

State (possible values of X)	Time	Notation
Continuous	Continuous	X(t)
Continuous	Discrete	X_t
Discrete	Continuous	
Discrete	Discrete	

Session 3: Time Series Analysis

Exploratory Analysis

We consider **lag** k scatter plots by plotting x_t versus x_{t+k} , but they are unwieldy. Suppose we make the assumption that a **linear** relationship holds approximately between x_{t+k} and x_t for all k, *i.e.*,

$$x_{t+k} = \alpha_k + \beta_k x_t + \varepsilon_{t+k}$$

where ε_{t+k} is an random error term.

The association between two variables $\{y_t\}$ and $\{z_t\}$ is the **Pearson product moment correlation coefficient**

$$\hat{\rho} = \frac{\sum (y_t - \bar{y})(z_t - \bar{z})}{\sqrt{\sum (y_t - \bar{y})^2 \sum (z_t - \bar{z})^2}}$$

where \bar{y} and \bar{z} are the sample means.

Session 3: Time Series Analysis

Hence if $y_t = x_{t+k}$ and $z_t = x_t$ we are led to the lag k sample autocorrelation for a time series:

$$\hat{
ho}_k = rac{\sum\limits_{t=1}^{N-k} (x_{t+k} - ar{x})(x_t - ar{x})}{\sum\limits_{t=1}^{N} (x_t - ar{x})^2}$$

with $\hat{\rho}_0 = 1$.

The sequence $\{\hat{\rho}_k\}$ is called the **sample autocorrelation** sequence (sample acfs) for the time series.

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

The series x_1, \ldots, x_N can be regarded as a realization of the corresponding random variables X_1, \ldots, X_N , $\hat{\rho}_k$ is an estimate of a corresponding population quantity called the lag k theoretical autocorrelation, defined as

$$\rho_k = \frac{E\left[(X_t - \mu)(X_{t+k} - \mu)\right]}{\sigma^2}$$

where

$$\mu = E[X_t] \qquad \sigma^2 = E[(X_t - \mu)^2]$$

are the process mean and process variance.

Note that ρ_k, μ and σ^2 do not depend on t

Session 3: Time Series Analysis

Denote the process by $\{X_t\}$. For fixed t, X_t is a random variable (r.v.), and hence there is an associated cumulative distribution function (cdf):

$$F_t(a) = P(X_t \leq a).$$

But we are interested in the relationships between the various r.v.s that form the process. For example, for any t_1 and $t_2 \in T$,

$$F_{t_1,t_2}(a_1,a_2) = P(X_{t_1} \le a_1, X_{t_2} \le a_2)$$

gives the bivariate cdf. More generally for any $t_1, t_2, \ldots, t_n \in T$,

$$F_{t_1,t_2,\ldots,t_n}(a_1,a_2,\ldots,a_n)=P(X_{t_1}\leq a_1,\ldots,X_{t_n}\leq a_n)$$

We consider the subclass of stationary processes.

Session 3: Time Series Analysis

Stationarity

Strong stationarity $\{X_t\}$ is said to be strongly (strictly, completely) stationary if, for all $n \ge 1$, for any

$$t_1, t_2, \ldots, t_n \in T$$

and for any τ such that

$$t_1 + \tau, t_2 + \tau, \ldots, t_n + \tau \in T$$

are also contained in the index set, the joint cdf of $\{X_{t_1}, \ldots, X_{t_n}\}$ is the same as that of $\{X_{t_1+\tau}, \ldots, X_{t_n+\tau}\}$ i.e.,

$$F_{t_1,t_2,\ldots,t_n}(a_1,a_2,\ldots,a_n)=F_{t_1+\tau,t_2+\tau,\ldots,t_n+\tau}(a_1,a_2,\ldots,a_n).$$

A B + A B +

Session 3: Time Series Analysis

Second-order stationarity $\{X_t\}$ is said to be second-order (weakly) stationary if, for all $n \ge 1$, for any

$$t_1, t_2, \ldots, t_n \in T$$

and for any τ such that $t_1 + \tau, t_2 + \tau, \ldots, t_n + \tau \in T$ are also contained in the index set, all the joint moments of orders 1 and 2 of $\{X_{t_1}, X_{t_2}, \ldots, X_{t_n}\}$ exist and are finite.

Most importantly, these moments are identical to the corresponding joint moments of $\{X_{t_1+\tau}, X_{t_2+\tau}, \dots, X_{t_n+\tau}\}$.

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

Hence,

$$E[X_t] \equiv \mu$$
 $Var[X_t] \equiv \sigma^2$ $(= E[X_t^2] - \mu^2),$

are constants independent of t. If we let $\tau = -t_1$,

$$E[X_{t_1}X_{t_2}] = E[X_{t_1+\tau}X_{t_2+\tau}] = E[X_0X_{t_2-t_1}],$$

and with $\tau = -t_2$,

$$E[X_{t_1}X_{t_2}] = E[X_{t_1+\tau}X_{t_2+\tau}] = E[X_{t_1-t_2}X_0].$$

(日) (同) (三) (三)

э

Session 3: Time Series Analysis

Hence, $E\{X_{t_1}X_{t_2}\}$ is a function of the absolute difference $|t_2 - t_1|$ only, similarly, for the **covariance** between $X_{t_1} \& X_{t_2}$:

$$Cov [X_{t_1}, X_{t_2}] = E [(X_{t_1} - \mu)(X_{t_2} - \mu)] = E [X_{t_1}X_{t_2}] - \mu^2.$$

The **autocovariance sequence** (acvs), s_{τ} , is defined by

$$s_{\tau} \equiv Cov[X_t, X_{t+\tau}] = Cov[X_0, X_{\tau}].$$

- τ is called the lag.
- $s_0 = \sigma^2$ and $s_{-\tau} = s_{\tau}$, with $|s_{\tau}| \le s_0$ for $\tau > 0$.
- The autocorrelation sequence (acfs) is given by

$$\rho_{\tau} = \frac{s_{\tau}}{s_0} = \frac{Cov\left[X_t, X_{t+\tau}\right]}{\sigma^2}.$$

Session 3: Time Series Analysis

The sequence $\{s_{\tau}\}$ is positive semidefinite, i.e., for all $n \ge 1$, for any t_1, t_2, \ldots, t_n contained in the index set, and for any set of nonzero real numbers a_1, a_2, \ldots, a_n

$$\sum_{j=1}^n \sum_{k=1}^n s_{t_j-t_k} a_j a_k \ge 0.$$

• Let $\mathbf{a} = (a_1, a_2, \dots, a_n)^T$, $\mathbf{V} = (X_{t_1}, X_{t_2}, \dots, X_{t_n})^T$, and let Σ be the variance-covariance matrix of \mathbf{V} . Its j, k-th element is given by

$$s_{t_j-t_k} = E\left[(X_{t_j}-\mu)(X_{t_k}-\mu)\right]$$

Session 3: Time Series Analysis

æ

(日) (同) (日) (日) (日)

Define the r.v.

$$w = \sum_{j=1}^n a_j X_{t_j} = \mathbf{a}^\mathsf{T} \mathbf{V}.$$

Then

$$0 \le Var[w] = Var\left[\mathbf{a}^{\mathsf{T}}\mathbf{V}\right] = \mathbf{a}^{\mathsf{T}}Var[\mathbf{V}] \mathbf{a} = \mathbf{a}^{\mathsf{T}}\Sigma\mathbf{a}$$
$$= \sum_{j=1}^{n}\sum_{k=1}^{n}s_{t_{j}-t_{k}}a_{j}a_{k}.$$

Session 3: Time Series Analysis

• The variance-covariance matrix of equispaced X's, $(X_1, X_2, \ldots, X_N)^{\mathsf{T}}$ has the form

- <i>s</i> 0	<i>s</i> ₁		<i>s</i> _{N-2}	s _{N-1}
s_1	<i>s</i> ₀		s_{N-3}	s_{N-2}
÷		·		
s_{N-2}	<i>s</i> _{N-3}		<i>s</i> ₀	s_1
s_{N-1}	s_{N-2}		s_1	<i>s</i> ₀

which is known as a symmetric Toeplitz matrix – all elements on a diagonal are the same.

• Note the above matrix has only N unique elements, $s_0, s_1, \ldots, s_{N-1}$.

Session 3: Time Series Analysis

- A stochastic process $\{X_t\}$ is called Gaussian if, for all $n \ge 1$ and for any t_1, t_2, \ldots, t_n contained in the index set, the joint cdf of $X_{t_1}, X_{t_2}, \ldots, X_{t_n}$ is multivariate Gaussian.
- 2nd-order stationary Gaussian \Rightarrow complete stationarity
- follows as the multivariate Normal distribution is completely characterized by 1st and 2nd moments
- not true in general.
- Complete stationarity \Rightarrow 2nd-order stationary in general.

- ∢ ≣ ▶

Session 3: Time Series Analysis

White noise process

Also known as a purely random process. Let $\{X_t\}$ be a sequence of uncorrelated r.v.s such that

$$E[X_t] = \mu$$
 $Var[X_t] = \sigma^2$ $\forall t$

and

$$s_{ au} = \left\{ egin{array}{ccc} \sigma^2 & au = 0 \\ 0 & au
eq 0 \end{array}
ight. ext{ or }
ho_{ au} = \left\{ egin{array}{ccc} 1 & au = 0 \\ 0 & au
eq 0 \end{array}
ight.$$

forms a basic building block in time series analysis. Very different realizations of white noise can be obtained for different distributions of $\{X_t\}$.

Session 3: Time Series Analysis

q-th order moving average process MA(q) X_t can be expressed in the form

$$X_t = \mu - \theta_{0,q}\epsilon_t - \theta_{1,q}\epsilon_{t-1} - \ldots - \theta_{q,q}\epsilon_{t-q} = \mu - \sum_{j=0}^q \theta_{j,q}\epsilon_{t-j},$$

where μ and $\theta_{j,q}$'s are constants ($\theta_{0,q} \equiv -1, \theta_{q,q} \neq 0$), and $\{\epsilon_t\}$ is a zero-mean white noise process with variance σ_{ϵ}^2 . We assume $E[X_t] = \mu = 0$. Then

$$Cov [X_t, X_{t+\tau}] = E\{X_t X_{t+\tau}\}$$

Session 3: Time Series Analysis

Recall: $Cov(X, Y) = E\{(X - E\{X\})(Y - E\{Y\})\}$. Since $E\{\epsilon_t \epsilon_{t+\tau}\} = 0 \quad \forall \tau \neq 0$ we have for $\tau \ge 0$.

$$Cov [X_t, X_{t+\tau}] = \sum_{j=0}^{q} \sum_{k=0}^{q} \theta_{j,q} \theta_{k,q} E\{\epsilon_{t-j} \epsilon_{t+\tau-k}\}$$
$$= \sigma_{\epsilon}^2 \sum_{j=0}^{q-\tau} \theta_{j,q} \theta_{j+\tau,q} \qquad (k = j + \tau)$$
$$\equiv s_{\tau},$$

which does not depend on t.

ト ヨ つくで

- ₹ ►

Session 3: Time Series Analysis

Since $s_{ au} = s_{- au}$, $\{X_t\}$ is a stationary process with acvs given by

$$s_{ au} = \left\{egin{array}{c} \sigma_{\epsilon}^2 \sum\limits_{j=0}^{q-| au|} heta_{j,q} heta_{j+| au|,q} & | au| \leq q \ 0 & | au| > q \end{array}
ight.$$

No restrictions were placed on the $\theta_{j,q}$'s to ensure stationarity.

Session 3: Time Series Analysis

æ

(日) (同) (三) (三)

Example:
$$X_t = \epsilon_t - \theta_{1,1}\epsilon_{t-1}$$
 MA(1)
acvs:

$$s_{\tau} = \sigma_{\epsilon}^2 \sum_{j=0}^{1-|\tau|} \theta_{j,1} \theta_{j+|\tau|,1} \quad |\tau| \le 1,$$

so,

$$s_0 = \sigma_\epsilon^2(heta_{0,1} heta_{0,1} + heta_{1,1} heta_{1,1}) = \sigma_\epsilon^2(1+ heta_{1,1}^2);$$

and,

$$s_1 = \sigma_\epsilon^2 \theta_{0,1} \theta_{1,1} = -\sigma_\epsilon^2 \theta_{1,1}.$$

Session 3: Time Series Analysis

acfs:

$$\rho_{\tau} = \frac{s_{\tau}}{s_0} : \rho_0 = 1.0 \qquad \rho_1 = \frac{-\theta_{1,1}}{1 + \theta_{1,1}^2}$$

For $heta_{1,1}=1.0, \sigma_{\epsilon}^2=1.0,$ we have,

$$s_0 = 2.0, s_1 = -1.0, s_2, s_3, \ldots = 0.0,$$

giving,

$$\rho_0 = 1.0, \rho_1 = -0.5, \rho_2, \rho_3, \ldots = 0.0.$$

For $heta_{1,1}=-1.0, \sigma_{\epsilon}^2=1.0,$ we have,

$$s_0 = 2.0, s_1 = 1.0, s_2, s_3, \ldots = 0.0,$$

giving,

$$\rho_0 = 1.0, \rho_1 = 0.5, \rho_2, \rho_3, \ldots = 0.0.$$

→ □ → → □ →

э

Session 3: Time Series Analysis

Note: if we replace $\theta_{1,1}$ by $\theta_{1,1}^{-1}$ the model becomes

$$X_t = \epsilon_t - \frac{1}{\theta_{1,1}} \epsilon_{t-1}$$

and the autocorrelation becomes

$$\rho_1 = \frac{-\frac{1}{\theta_{1,1}}}{1 + \left(\frac{1}{\theta_{1,1}}\right)^2} = \frac{-\theta_{1,1}}{\theta_{1,1}^2 + 1},$$

i.e., is unchanged. Thus we cannot identify the MA(1) process uniquely from the autocorrelation.

Session 3: Time Series Analysis

p-th order autoregressive process AR(p) { X_t } is expressed in the form

$$X_t = \phi_{1,p} X_{t-1} + \phi_{2,p} X_{t-2} + \ldots + \phi_{p,p} X_{t-p} + \epsilon_t,$$

where $\phi_{1,p}, \phi_{2,p}, \dots, \phi_{p,p}$ are constants $(\phi_{p,p} \neq 0)$ and $\{\epsilon_t\}$ is a zero mean white noise process with variance σ_{ϵ}^2 .

In contrast to the parameters of an MA(q) process, the $\{\phi_{k,p}\}$ must satisfy certain conditions for $\{X_t\}$ to be a stationary process – not all AR(p) processes are stationary.

Session 3: Time Series Analysis

Example

$$\begin{aligned} X_t &= \phi_{1,1} X_{t-1} + \epsilon_t \\ &= \phi_{1,1} \{ \phi_{1,1} X_{t-2} + \epsilon_{t-1} \} + \epsilon_t \\ &= \phi_{1,1}^2 X_{t-2} + \phi_{1,1} \epsilon_{t-1} + \epsilon_t \\ &\vdots \\ &= \sum_{k=0}^{\infty} \phi_{1,1}^k \epsilon_{t-k} \quad \text{(initial condition } X_{-N} = 0; \text{ let } N \to \infty \end{aligned}$$

$$Var[X_{t}] = Var\left[\sum_{k=0}^{\infty} \phi_{1,1}^{k} \epsilon_{t-k}\right] = \sum_{k=0}^{\infty} Var\{\phi_{1,1}^{k} \epsilon_{t-k}\} = \sigma_{\epsilon}^{2} \sum_{k=0}^{\infty} \phi_{1,1}^{2k}.$$

æ

《口》《聞》《臣》《臣》

Session 3: Time Series Analysis

For $Var[X_t] < \infty$ we must have $|\phi_{1,1}| < 1$, in which case

Var
$$[X_t] = rac{\sigma_\epsilon^2}{1-\phi_{1,1}^2}.$$

To find the form of the acvs, we notice that for $\tau > 0$, $X_{t-\tau}$ is a linear function of $\epsilon_{t-\tau}, \epsilon_{t-\tau-1}, \ldots$ and is therefore uncorrelated with ϵ_t . Hence

$$E\left[\epsilon_t X_{t-\tau}\right] = 0.$$

Session 3: Time Series Analysis

Assuming stationarity and multiplying the defining equation (1) by $X_{t-\tau}$:

$$X_t X_{t-\tau} = \phi_{1,1} X_t X_{t-\tau} + \epsilon_t X_{t-\tau}$$

$$\Longrightarrow E[X_t X_{t-\tau}] = \phi_{1,1} E[X_{t-1} X_{t-\tau}]$$

so that

$$s_{ au} = \phi_{1,1} s_{ au-1} = \phi_{1,1}^2 s_{ au-2} = \ldots = \phi_{1,1}^{ au} s_0 \qquad \Rightarrow \rho_{ au} = \frac{s_{ au}}{s_0} = \phi_{1,1}^{ au}$$

However ρ_{τ} is an even function of $\tau,$ so

$$ho_{ au} = \phi_{1,1}^{| au|} \qquad au = 0, \pm 1, \pm 2, \dots.$$

giving exponential decay

< ∃ →

Session 3: Time Series Analysis

(p, q)'th order autoregressive-moving average process ARMA(p, q)

Here $\{X_t\}$ is expressed as

$$X_t = \phi_{1,p} X_{t-1} + \ldots + \phi_{p,p} X_{t-p} + \epsilon_t - \theta_{1,q} \epsilon_{t-1} - \ldots - \theta_{q,q} \epsilon_{t-q},$$

where the $\phi_{j,p}$'s and the $\theta_{j,q}$'s are all constants $(\phi_{p,p} \neq 0; \theta_{q,q} \neq 0)$ and again $\{\epsilon_t\}$ is a zero mean white noise process with variance σ_{ϵ}^2 .

The ARMA class is important as many data sets may be approximated in a more parsimonious way (meaning fewer parameters are needed) by a mixed ARMA model than by a pure AR or MA process.

Session 3: Time Series Analysis

The General Linear Process

Consider a process of the form

$$X_t = \sum_{k=-\infty}^{\infty} g_k \epsilon_{t-k},$$

where $\{\epsilon_t\}$ is a purely random process, with

$$\sum_{k=-\infty}^{\infty}g_k^2<\infty.$$

-

This condition ensures that $\{X_t\}$ has finite variance. Now $|\rho_t| \leq 1$, so, also,

$$|s_{\tau}| = |Cov[X_t, X_{t-\tau}]| \le \sigma_X^2 = \sigma_\epsilon^2 \sum_{k \text{ or } k \in \mathbb{R}} g_k^2 < \infty.$$

Session 3: Time Series Analysis

If $g_{-1}, g_{-2}, \ldots = 0$, then we obtain what is called the *General Linear Process*

$$X_t = \sum_{k=0}^{\infty} g_k \epsilon_{t-k},$$

where X_t depends only on past and present values $\epsilon_t, \epsilon_{t-2}, \epsilon_{t-2}, \ldots$ of the purely random process. Consider the function

$$G(z)=\sum_{k=0}^{\infty}g_kz^k,$$

"z-polynomial" where $z = e^{-i\omega}$. Note $X_t = G(B)\epsilon_t$.

E のQC

Session 3: Time Series Analysis

Then write

$$G(z)=\frac{G_1(z)}{G_2(z)}$$

Call the zeros of $G_2(z)$ (the "poles" of G(z)) in the **complex plane** z_1, z_2, \ldots, z_p , where the zeros are ordered so that z_1, \ldots, z_k are inside and z_{k+1}, \ldots, z_p are outside the unit circle |z| = 1.

Then, if all the roots of $G_2(z)$ are outside the unit circle (i.e. all the poles of G(z) are outside the unit circle) only past and present values of $\{\epsilon_t\}$ are involved and the General Linear Process exists.

ヨー かくぐ

Session 3: Time Series Analysis

 $31/\ 171$

Another way of stating this is that

$$G(z) < \infty \qquad |z| \leq 1$$

i.e., G(z) is analytic inside and on the unit circle. Thus

- all the poles of G(z) lie outside the unit circle
- all the roots of $G^{-1}(z) = 0$ lie outside the unit circle

Session 3: Time Series Analysis

Consider the MA(q) model

$$X_t = \Theta(B)\epsilon_t \implies \Theta^{-1}(B)X_t = \epsilon_t$$

and in general, the expansion of $\Theta^{-1}(B)$ is a polynomial of infinite order. Similarly, consider the AR(p) model

$$\Phi(B)X_t = \epsilon_t \implies X_t = \Phi^{-1}(B)\epsilon_t.$$

Hence

 $\begin{array}{rcl} \mathsf{MA} \mbox{(finite order)} &\equiv & \mathsf{AR} \mbox{(infinite order)} \\ \mathsf{AR} \mbox{(finite order)} &\equiv & \mathsf{MA} \mbox{(infinite order)} \end{array}$

provided the infinite order expansions exist

Session 3: Time Series Analysis

Invertibility

Consider inverting the general linear process into autoregressive form

$$X_t = \sum_{k=0}^{\infty} g_k \epsilon_{t-k} = \sum_{k=0}^{\infty} g_k B^k \epsilon_t$$
$$= G(B)\epsilon_t$$

so that

$$G^{-1}(B)X_t = \epsilon_t$$

< A >

- ₹ 🖹 🕨

- ∢ ⊒ →

Session 3: Time Series Analysis

The expansion of $G^{-1}(B)$ in powers of *B* gives the required autoregressive form **provided** $G^{-1}(B)$ **admits a power series expansion**

$$G^{-1}(z) = \sum_{k=0}^{\infty} h_k z^k$$

i.e. if $G^{-1}(z)$ is analytic, $|z| \leq 1$. Thus the model is invertible if all the poles of $G^{-1}(z)$ are outside the unit circle.

$$G^{-1}(z) < \infty, \quad |z| \le 1.$$

For the MA(q) process, $G(z) = \Theta(z)$, and so the invertibility condition is that $\Theta(z)$ has no roots inside or on the unit circle; i.e. all the roots of $\Theta(z)$ lie outside the unit circle.
Session 3: Time Series Analysis

Stationarity of ARMA processes For the AR(p) process

$$\Phi(B)X_t = \epsilon_t$$

so that

$$X_t = \Phi^{-1}(B)\epsilon_t = G(B)\epsilon_t,$$

so that $G(z) = \Phi^{-1}(z)$. Hence the requirement for stationarity is that all the roots of $G^{-1}(z) = \Phi(z)$ must lie outside the unit circle.

For the MA(q) process

$$X_t = \Theta(B)\epsilon_t = G(B)\epsilon_t$$

and since $G(B) = \Theta(B)$ is a polynomial of finite order $G(z) < \infty$, $|z| \le 1$, automatically.

Session 3: Time Series Analysis

Example:

$$X_t = 1.3X_{t-1} - 0.4X_{t-2} + \epsilon_t - 1.5\epsilon_{t-1}.$$

Writing in B notation:

$$(1 - 1.3B + 0.4B^2)X_t = (1 - 1.5B)\epsilon_t$$

we have

$$\Phi(z) = 1 - 1.3z + 0.4z^2$$

with roots z = 2 and 5/4, so the roots of $\Phi(z) = 0$ both lie outside the unit circle, and the model is stationary, and

$$\Theta(z)=1-1.5z,$$

so the root of $\Theta(z) = 0$ is given by z = 2/3 which lies inside the unit circle and the model is not invertible.

Session 3: Time Series Analysis

Directionality and Reversibility

Consider again the general linear model

$$X_t = \sum_{k=0}^{\infty} g_k \epsilon_{t-k} = \sum_{k=0}^{\infty} g_k B^k \epsilon_t = G(B) \epsilon_t$$

The reversed form is clearly,

$$X_t = \sum_{k=0}^{\infty} g_k \epsilon_{t+k} = \sum_{k=0}^{\infty} g_k B^{-k} \epsilon_t = G\left(\frac{1}{B}\right) \epsilon_t,$$

with some stationarity condition.

Session 3: Time Series Analysis

Now consider the ARMA(p, q) model given by

 $\Phi(B)X_t = \Theta(B)\epsilon_t,$

where,

$$\Phi(B) = 1 - \phi_{1,p}B - \phi_{2,p}B^2 - \dots - \phi_{p,p}B^p$$

$$\Theta(B) = 1 - \theta_{1,q}B - \theta_{2,q}B^2 - \dots - \theta_{q,q}B^q$$

э

Session 3: Time Series Analysis

The reversed form of the ARMA(p, q) model is,

$$\Phi\left(\frac{1}{B}\right)X_t = \Theta\left(\frac{1}{B}\right)\epsilon_t \Longrightarrow \Phi^R(B)X_t = B^{p-q}\Theta^R\epsilon_t$$

where,

$$\Phi^{R}(B) = B^{p} - \phi_{1,p}B^{p-1} - \phi_{2,p}B^{p-2} - \dots - \phi_{p,p}$$

$$\Theta^{R}(B) = B^{q} - \theta_{1,q}B^{q-1} - \theta_{2,q}B^{q-2} - \dots - \theta_{q,q}$$

э

Session 3: Time Series Analysis

40/171

For example, for the ARMA(1,1) model,

$$(1-\phi_{1,1})X_t = (1-\theta_{1,1})\epsilon_t,$$

reversed form is

$$(B-\phi_{1,1})X_t=(B-\theta_{1,1})\epsilon_t$$

Now $\Phi(z) = 1 - \phi_{1,1}z$, and a root is the solution of $1 - \phi_{1,1}z = 0$, i.e.,

$$|z| = \left|rac{1}{\phi_{1,1}}
ight| > 1 \Rightarrow |\phi_{1,1}| < 1.$$

(日)

Session 3: Time Series Analysis

But, $\Phi^R(z) = z - \phi_{1,1}$, and so a root is the solution of $z - \phi_{1,1} = 0$, i.e., $z = \phi_{1,1}$. But, since for stationarity $|\phi_{1,1}| < 1$ we have

 $|z| = |\phi_{1,1}| < 1,$

so the root of $\Phi^R(z)$ is inside the unit circle.

Hence the standard assumption for stationarity (roots outside the unit circle) has within it an assumption of directionality. [N.B. only if the roots of $\Phi(z)$ are on the unit circle is model ALWAYS non-stationary].

(4月) (4日) (4日)

Session 3: Time Series Analysis

Spectral Representations

Spectral analysis is a study of the frequency domain characteristics of a process, and describes the contribution of each frequency to the variance of the process. Let us define a complex "jump" process $\{Z(f)\}$ on the interval [0, 1/2], such that

$$dZ(f) \equiv \left\{ egin{array}{ll} Z(f+df)-Z(f), & 0\leq f<1/2; \ 0, & f=1/2; \ dZ^*(-f), & -1/2\leq f<0, \end{array}
ight.$$

where df is a small positive increment. If the intervals [f, f + df]and [f', f' + df'] are non-intersecting subintervals of [-1/2, 1/2], then the r.v.'s dZ(f) and dZ(f') are uncorrelated.

Session 3: Time Series Analysis

We say that the process has **orthogonal increments**, and the process itself is called an **orthogonal process** – this orthogonality results is very important.

Let $\{X_t\}$ be a real-valued discrete time stationary process, with zero mean, the **spectral representation theorem** states that there exists such an orthogonal process $\{Z(f)\}$, defined on (-1/2, 1/2], such that

$$X_t = \int_{-1/2}^{1/2} e^{i2\pi ft} \, dZ(f)$$

for all integers t.

Session 3: Time Series Analysis

The process $\{Z(f)\}$ has the following properties:

- $E\{dZ(f)\} = 0 \ \forall \ |f| \le 1/2.$
- $E\{|dZ(f)|^2\} \equiv dS^{(I)}(f) \text{ say } \forall |f| \leq 1/2, \text{ where } dS^{(I)}(f) \text{ is called the integrated spectrum of } \{X_t\}, \text{ and }$
- for any two distinct frequencies f and $f' \in (-1/2, 1/2]$

$$Cov\{dZ(f'), dZ(f)\} = E\{dZ^*(f')dZ(f)\} = 0.$$

- < E > < E >

Session 3: Time Series Analysis

The spectral representation

$$X_t = \int_{-1/2}^{1/2} e^{i2\pi ft} \, dZ(f) = \int_{-1/2}^{1/2} e^{i2\pi ft} \, |dZ(f)| e^{i\arg\{dZ(f)\}},$$

means that we can represent any discrete stationary process as an "infinite" sum of complex exponentials at frequencies f with associated random amplitudes |dZ(f)| and random phases $\arg\{dZ(f)\}$.

Session 3: Time Series Analysis

The orthogonal increments property can be used to define the relationship between the autocovariance sequence $\{s_{\tau}\}$ and the integrated spectrum S'(f):

$$s_{\tau} = E[X_t X_{t+\tau}] = E[X_t^* X_{t+\tau}]$$

$$= E\left[\int_{-1/2}^{1/2} e^{-i2\pi f't} dZ^*(f') \int_{-1/2}^{1/2} e^{i2\pi f(t+\tau)} dZ(f)\right]$$

$$= \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} e^{i2\pi (f-f')t} e^{i2\pi f\tau} E\{dZ^*(f')dZ(f)\}.$$

- ₹ 🖬 🕨

Session 3: Time Series Analysis

Because of the orthogonal increments property,

$$E\{dZ^{*}(f')dZ(f)\} = dS^{(I)}(f)$$
 $f = f'$

and zero otherwise, so

$$s_{ au} = \int_{-1/2}^{1/2} e^{i2\pi f \, au} \, dS^{(I)}(f),$$

which shows that the integrated spectrum determines the acvs for a stationary process. If $S^{(I)}(f)$ is differentiable with derivative S(f)(the *spectral density function* (sdf)), we have

$$E\{|dZ(f)|^2\} = dS^{(I)}(f) = S(f) df.$$

Hence

$$s_{ au} = \int_{-1/2}^{1/2} e^{i2\pi ft} S(f) \, df.$$

Session 3: Time Series Analysis

But a square summable deterministic sequence $\{g_t\}$ say has the **Fourier representation**

$$g_t = \int_{-1/2}^{1/2} G(f) e^{i2\pi ft} df$$
 where $G(f) = \sum_{t=-\infty}^{\infty} g_t e^{-i2\pi ft}$,

If we assume that S(f) is square integrable, then S(f) is the **Fourier transform** of $\{s_{\tau}\}$,

$$S(f) = \sum_{\tau=-\infty}^{\infty} s_{\tau} e^{-i2\pi f \tau}.$$

Hence,

$$\{s_{\tau}\} \longleftrightarrow S(f),$$

i.e., $\{s_{\tau}\}$ and S(f) are a FT. pair.

Session 3: Time Series Analysis

 $S(\cdot)$ has the following interpretation: S(f) df is the average contribution (over all realizations) to the power from components with frequencies in a small interval about f. The power – or variance – is

$$\int_{-1/2}^{1/2} S(f) \, df.$$

Hence, S(f) is often called the *power spectral density function* or just *power spectrum*.

Session 3: Time Series Analysis

Properties :

•
$$S^{(I)}(f) = \int_{-1/2}^{f} S(f') df'.$$

• $0 \le S^{(I)}(f) \le \sigma^2$ where $\sigma^2 = Var[X_t]; \quad S(f) \ge 0.$
• $S^{(I)}(-1/2) = 0; \quad S^{(I)}(1/2) = \sigma^2; \quad \int_{-1/2}^{1/2} S(f) df = \sigma^2.$
• $f < f' \Rightarrow S^{(I)}(f) \le S^{(I)}(f'); \quad S(-f) = S(f).$

Except, basically, for the scaling factor σ^2 , $S^{(I)}(f)$ has all the properties of a probability distribution function, and hence is sometimes called a **spectral distribution function**.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Session 3: Time Series Analysis

The integrated spectrum,
$$S^{(I)}(f)$$
 can be decomposed as

$$S^{(I)}(f) = S_1^{(I)}(f) + S_2^{(I)}(f)$$

where the $S_j^{(l)}(f)$'s are nonnegative, nondecreasing functions with $S_i^{(l)}(-1/2) = 0$ and are of the following types:

• $S_1^{(I)}(\cdot)$ has its derivative $S(\cdot)$ for all f, and

$$S^{(I)}(f) = \int_{-1/2}^{f} S(f') df'.$$

• $S_2^{(I)}(\cdot)$ is a step function with jumps of size $\{p_l\}: l = 1, 2, \ldots\}$ at the points $\{f_l: l = 1, 2, \ldots\}$.

Session 3: Time Series Analysis

(a) If $S_1^{(I)}(f) \ge 0$; $S_2^{(I)}(f) = 0$, $\{X_t\}$ has a *purely continuous* spectrum and S(f) is absolutely integrable, with

$$\int_{-1/2}^{1/2} S(f) \cos(2\pi f\tau) \, df \quad \text{and} \quad \int_{-1/2}^{1/2} S(f) \sin(2\pi f\tau) \to 0,$$

as
$$\tau \to \infty$$
. But,
 $s_{\tau} = \int_{-1/2}^{1/2} e^{i2\pi f\tau} S(f) df$
 $= \int_{-1/2}^{1/2} S(f) \cos(2\pi f\tau) df + i \int_{-1/2}^{1/2} S(f) \sin(2\pi f\tau) df$

so that $s_{\tau} \to 0$ as $|\tau| \to \infty$. In other words, the acvs diminishes to zero (called "mixing condition").

Session 3: Time Series Analysis

(b) If $S_1^{(I)}(f) = 0$; $S_2^{(I)}(f) \ge 0$, the integrated spectrum consists entirely of a step function, and the $\{X_t\}$ is said to have a *purely discrete spectrum* or a *line spectrum*.

The acvs for a process with a line spectrum never damps down to 0.

Session 3: Time Series Analysis

White noise spectrum

Recall that a white noise process $\{\epsilon_t\}$ has acvs:

$$s_{ au} = \left\{ egin{array}{cc} \sigma_{\epsilon}^2 & au = 0 \ 0 & ext{otherwise} \end{array}
ight.$$

Therefore, the spectrum of a white noise process is given by:

$$S_{\epsilon}(f) = \sum_{\tau=-\infty}^{\infty} s_{\tau} e^{-i2\pi f \tau} = s_0 = \sigma_{\epsilon}^2.$$

i.e., white noise has a constant spectrum.

▶ <u>₹</u> *)Q(*

Session 3: Time Series Analysis

The sdf and acvs contain the same amount of information in that if we know one of them, we can calculate the other. However, they are often not equally informative.

- The sdf usually proves to be the more sensitive and interpretable diagnostic or exploratory tool.
- The sdf is able to distinguish between the processes while the acvs's are not noticeably different.
- $dB = 10 \log_{10}(power)$ scale often used.

Session 3: Time Series Analysis

Sampling and Aliasing

So far we have only looked at discrete time series $\{X_t\}$. However, such a process is usually obtained by sampling a continuous time process at equal intervals Δt , i.e., for a sampling interval $\Delta t > 0$ and an arbitrary time offset t_0 , we can define a discrete time process through

$$X_t \equiv X(t_0 + t\Delta t), \quad t = 0, \pm 1, \pm 2, \ldots$$

If $\{X(t)\}\$ is a stationary process with, say, sdf $S_{X(t)}(\cdot)$ and acvf $s(\tau)$, then $\{X_t\}$ is also a stationary process with, say, sdf $S_{X_t}(\cdot)$ and acvs $\{s_{\tau}\}$.

Session 3: Time Series Analysis

57/171

It can be shown that when $S_{X(t)}^{(I)}$ is differentiable:

$$S_{X_t}(f) = \sum_{k=-\infty}^{\infty} S_{X(t)}\left(f + \frac{k}{\Delta t}\right) \quad \text{for} \quad |f| \leq \frac{1}{2\Delta t}.$$

Thus, the discrete time sdf at f is the sum of the continuous time sdf at frequencies $f \pm \frac{k}{\Delta t}$, k = 0, 1, 2, ...

The frequency $1/(2\Delta t)$ is called the *Nyquist frequency*; previously we have taken $\Delta t = 1$, so that the frequency range was $|f| \le \frac{1}{2}$.

Session 3: Time Series Analysis

If $S_{X(t)}$ is essentially zero for $|f| > 1/(2\Delta t)$ we can expect good correspondence between $S_{X_t}(f)$ and $S_{X(t)}(f)$ for $|f| \le 1/(2\Delta t)$ (since

$$S_{X(t)}(f \pm k/(2\Delta t)) \approx 0$$

for k = 1, 2, ...).

If $S_{X(t)}$ is large for some $|f| > 1/(2\Delta t)$, the correspondence can be quite poor, and an estimate of S_{X_t} will not tell us much about $S_{X(t)}$.

Session 3: Time Series Analysis

Estimation and Forecasting

Ergodic Property Methods we shall look at for estimating quantities such as the autocovariance function will use observations from a single realization.

Such methods are based on the strategy of replacing ensemble averages by their corresponding time averages.

Session 3: Time Series Analysis

Sample mean:

Given a time series X_1, X_2, \ldots, X_N , let

$$ar{X} = rac{1}{N} \sum X_t. \quad \left(ext{assume } \sum_{ au=-\infty}^\infty |s_{ au}| < \infty
ight).$$

Then,

$$E\{\bar{X}\} = \frac{1}{N} \sum_{t=1}^{n} E[X_t] = \frac{1}{N} \cdot N\mu = \mu$$

so \bar{X} is an unbiased estimator of μ . Hence, \bar{X} converges to μ in mean square if

$$\lim_{N\to\infty} Var\{\bar{X}\}=0.$$

Session 3: Time Series Analysis

æ

(日) (同) (三) (三)

$$\begin{aligned} \text{Var}\{\bar{X}\} &= E\{(\bar{X}-\mu)^2\} = E\left\{\left(\frac{1}{N}\sum_{i=1}^{N}(X_i-\mu)\right)^2\right\} \\ &= \frac{1}{N^2}\sum_{t=1}^{N}\sum_{u=1}^{N}E\{(X_t-\mu)(X_u-\mu)\} = \frac{1}{N^2}\sum_{t=1}^{N}\sum_{u=1}^{N}s_{u-t} \\ &= \frac{1}{N^2}\sum_{\tau=-(N-1)}^{N-1}\sum_{k=1}^{N-|\tau|}s_{\tau} \\ &= \frac{1}{N^2}\sum_{\tau=-(N-1)}^{N-1}(N-|\tau|)s_{\tau} = \frac{1}{N}\sum_{\tau=-(N-1)}^{N-1}\left(1-\frac{|\tau|}{N}\right)s_{\tau} \end{aligned}$$

Session 3: Time Series Analysis

lf

converges to a limit as $N \to \infty$, then

$$\text{it must since} \quad \left|\sum_{\tau=-(N-1)}^{N-1} s_{\tau}\right| \leq \sum_{\tau=-(N-1)}^{N-1} |s_{\tau}| < \infty \ \, \forall \, N,$$

then $\sum_{ au=-(N-1)}^{N-1} \left(1 - rac{| au|}{N}\right) s_{ au}$ converges to the same limit.

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

63/ 171

We can thus conclude that,

$$\lim_{N \to \infty} NVar\{\bar{X}\} = \lim_{N \to \infty} \sum_{\tau = -(N-1)}^{N-1} \left(1 - \frac{|\tau|}{N}\right) s_{\tau}$$
$$= \lim_{N \to \infty} \sum_{\tau = -(N-1)}^{N-1} s_{\tau} = \sum_{\tau = -\infty}^{\infty} s_{\tau}.$$

▲ 同 ▶ → 三 ▶

Session 3: Time Series Analysis

The assumption of absolute summability of $\{s_{\tau}\}$ implies that $\{X_t\}$ has a purely continuous spectrum with sdf

$$S(f) = \sum_{ au=-\infty}^{\infty} s_ au e^{-i2\pi f au}, \qquad ext{so that } S(0) = \sum_{ au=-\infty}^{\infty} s_ au.$$

Thus

$$\lim_{N\to\infty} NVar\{\bar{X}\} = S(0) \qquad \therefore \qquad Var\{\bar{X}\} \approx \frac{S(0)}{N} \quad \text{for large } N.$$

and therefore, $Var{\bar{X}} \rightarrow 0$. Note that the convergence of \bar{X} depends only on the spectrum at S(0), i.e. at f = 0.

Session 3: Time Series Analysis

Autocovariance Sequence: Now,

$$s_{\tau} = E\{(X_t - \mu)(X_{t+\tau} - \mu)\}$$

so that a natural estimator for the acvs is

$$\hat{s}_{\tau}^{(u)} = rac{1}{N-| au|} \sum_{t=1}^{N-| au|} (X_t - ar{X}) (X_{t+| au|} - ar{X}) \quad au = 0, \pm 1, \dots, \pm (N-1).$$

Note $\hat{s}_{- au}^{(u)} = \hat{s}_{ au}^{(u)}$ as it should.

ヨー うくぐ

< ∃ >

Session 3: Time Series Analysis

If we replace \bar{X} by μ :

$$E\{\hat{s}_{\tau}^{(u)}\} = \frac{1}{N-|\tau|} \sum_{t=1}^{N-|\tau|} E\{(X_t - \mu)(X_{t+|\tau|} - \mu)\}$$
$$= \frac{1}{N-|\tau|} \sum_{t=1}^{N-|\tau|} s_{\tau} = s_{\tau}, \quad \tau = 0, \pm 1, \dots, \pm (N-1).$$

Thus, $\hat{s}_{\tau}^{(u)}$ is an unbiased estimator of s_{τ} when μ is known. (Hence the (u) – for unbiased). Most texts refer to $\hat{s}_{\tau}^{(u)}$ as unbiased – however, if μ is estimated by \bar{X} , $\hat{s}_{\tau}^{(u)}$ is typically a biased estimator of s_{τ} .

Session 3: Time Series Analysis

A second estimator of s_{τ} is typically preferred:

$$\hat{s}^{(p)}_{ au} = rac{1}{N} \sum_{t=1}^{N-| au|} (X_t - ar{X}) (X_{t+| au|} - ar{X}) \quad au = 0, \pm 1, \dots, \pm (N-1).$$

With \bar{X} replaced by μ :

$$E\{\hat{s}^{(p)}_{ au}\}=rac{1}{N}\sum_{t=1}^{N-| au|}s_{ au}=\left(1-rac{| au|}{N}
ight)s_{ au},$$

so that $\hat{s}_{\tau}^{(p)}$ is a biased estimator, and the magnitude of its bias increases as $|\tau|$ increases. Most texts refer to $\hat{s}_{\tau}^{(p)}$ as biased.

Session 3: Time Series Analysis

Why should we prefer the "biased" estimator $\hat{s}_{\tau}^{(p)}$ to the "unbiased" estimator $\hat{s}_{\tau}^{(u)}$?

1 For many stationary processes of practical interest

 $\mathsf{mse}\{\hat{s}_{\tau}^{(p)}\} < \mathsf{mse}\{\hat{s}_{\tau}^{(u)}\},$

where

mse{
$$\hat{s}_{\tau}$$
} = $E\{(\hat{s}_{\tau} - s_{\tau})^2\}$
= $E\{\hat{s}_{\tau}^2\} - 2s_{\tau}E\{\hat{s}_{\tau}\} + s_{\tau}^2$
= $(E\{\hat{s}_{\tau}^2\} - E^2\{\hat{s}_{\tau}\}) + E^2\{\hat{s}_{\tau}\} - 2s_{\tau}E\{\hat{s}_{\tau}\} + s_{\tau}^2$
= $Var\{\hat{s}_{\tau}\} + (s_{\tau} - E\{\hat{s}_{\tau}\})^2$
= variance + (bias)²

A B + A B +

Session 3: Time Series Analysis

- 2 If $\{X_t\}$ has a purely continuous spectrum we know that $s_{\tau} \to 0$ as $|\tau| \to \infty$. It therefore makes sense to choose an estimator that decreases nicely as $|\tau| \to N-1$ (i.e. choose $\hat{s}_{\tau}^{(p)}$).
- 3 We know that the acvs must be positive semidefinite, the sequence $\{\hat{s}_{\tau}^{(p)}\}$ has this property, whereas the sequence $\{\hat{s}_{\tau}^{(u)}\}$ may not.

Session 3: Time Series Analysis

The Periodogram

Suppose

$$\mathcal{S}(f) = \sum_{ au=-\infty}^{\infty} s_{ au} e^{-i2\pi f au} \quad |f| \leq rac{1}{2},$$

is purely continuous. We can use the (biased) estimator of s_{τ} :

$$\hat{s}_{ au}^{(p)} = rac{1}{N} \sum_{t=1}^{N-| au|} X_t X_{t+| au|}$$

for $|\tau| \leq N - 1$, but not for $|\tau| \geq N$. Hence we could replace s_{τ} by $\hat{s}_{\tau}^{(p)}$ for $|\tau| \leq N - 1$ and assume $s_{\tau} = 0$ for $|\tau| \geq N$.
Session 3: Time Series Analysis

71/ 171

Hence,

$$\begin{split} \hat{S}^{(p)}(f) &= \sum_{\tau=-(N-1)}^{(N-1)} \hat{s}_{\tau}^{(p)} e^{-i2\pi f\tau} \\ &= \frac{1}{N} \sum_{\tau=-(N-1)}^{(N-1)} \sum_{t=1}^{N-|\tau|} X_t X_{t+|\tau|} e^{-i2\pi f\tau} \\ &= \frac{1}{N} \sum_{j=1}^{N} \sum_{k=1}^{N} X_j X_k e^{-i2\pi f(k-j)} = \frac{1}{N} \left| \sum_{t=1}^{N} X_t e^{-i2\pi ft} \right|^2, \end{split}$$

 $\hat{S}^{(p)}(f)$ defined above is known as the *periodogram*, and is defined over [-1/2, 1/2].

(人間) ト く ヨ ト く ヨ ト

Session 3: Time Series Analysis

Note that $\{s_{ au}^{(p)}\}$ and $\hat{S}^{(p)}(f)$,

$$\{s^{(p)}_{\tau}\}\longleftrightarrow \hat{S}^{(p)}(f)$$

just like the process quantities

$$\{s_{\tau}\} \longleftrightarrow S(f).$$

Hence, $\{s_{\tau}^{(p)}\}$ can be written as

$$s_{ au}^{(p)} = \int_{-1/2}^{1/2} \hat{S}^{(p)}(f) e^{i 2 \pi f au} \, df \quad | au| \leq N-1.$$

Session 3: Time Series Analysis

If $\hat{S}^{(p)}(f)$ were an ideal estimator of S(f) we would have i $E\{\hat{S}^{(p)}(f)\} \approx S(f) \quad \forall f.$ ii $Var\{\hat{S}^{(p)}(f)\} \rightarrow 0$ as $N \rightarrow \infty$ and, iii $Cov\{\hat{S}^{(p)}(f), \hat{S}^{(p)}(f')\} \approx 0$ for $f \neq f'.$

We find that

- i is a good approximation for some processes,
- ii is patently false,
- iii holds if f and f' are certain distinct frequencies, namely, the Fourier frequencies $f_k = k/N$ ($\Delta t = 1$).

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

We firstly look at the expectation in i. (assuming $\mu = 0$).

$$E\{\hat{S}^{(p)}(f)\} = \sum_{\tau=-(N-1)}^{(N-1)} E\{s_{\tau}^{(p)}\}e^{-i2\pi f\tau}$$
$$= \sum_{\tau=-(N-1)}^{(N-1)} \left(1 - \frac{|\tau|}{N}\right) s_{\tau}e^{-i2\pi f\tau}$$

Hence, if we know the acvs $\{s_{\tau}\}$ we can work out from this what $E\{\hat{S}^{(p)}(f)\}$ will be.

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

We can obtain much more insight by considering:

$$E\{|J(f)|^2\}$$
 where $J(f) = rac{1}{\sqrt{N}}\sum_{t=1}^N X_t e^{-i2\pi ft}, \quad |f| \leq rac{1}{2}.$

as $\hat{S}^{(p)}(f) = |J(f)|^2$.

< 47 ▶

A B + A B +

э

Session 3: Time Series Analysis

We know from the spectral representation theorem that,

$$X_t = \int_{-1/2}^{1/2} e^{i2\pi f't} \, dZ(f'),$$

so that,

$$J(f) = \sum_{t=1}^{N} \left(\int_{-1/2}^{1/2} \frac{1}{\sqrt{N}} e^{i2\pi f't} \, dZ(f') \right) e^{-i2\pi ft}$$
$$= \int_{-1/2}^{1/2} \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{-i2\pi (f-f')t} \, dZ(f')$$

< 日 > < 同 > < 三 > < 三 >

э

Session 3: Time Series Analysis

We find that,

$$E\{\hat{S}^{(p)}(f)\} = E\{|J(f)|^2\} = E\{J^*(f)J(f)\}$$

= $\int_{-1/2}^{1/2} \mathcal{F}(f-f')S(f') df',$

where \mathcal{F} is Féjer's kernel defined by

$$\mathcal{F}(f) = \left| \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{-i2\pi f t} \right|^2 = \frac{\sin^2(N\pi f)}{N\sin^2(\pi f)}.$$

This result tells us that the expected value of $\hat{S}^{(p)}(f)$ is the true spectrum convolved with Féjer's kernel.

< A >

- ∢ ≣ ▶

三 うくい

Session 3: Time Series Analysis

Properties of Féjer's kernel:

(a) For all integers
$$N \ge 1, \mathcal{F}(f) \rightarrow N$$
 as $f \rightarrow 0$.

(b) For
$$N \ge 1$$
, $f \in [-1/2, 1/2]$ and $f \ne 0$, $\mathcal{F}(f) < \mathcal{F}(0)$.

(c) For
$$f \in [-1/2, 1/2]$$
, $f \neq 0$, $\mathcal{F}(f) \rightarrow 0$ as $N \rightarrow \infty$.

(d) For any integer
$$k \neq 0$$
 such that

$$f_k = k/N \in [-1/2, 1/2], \ \mathcal{F}(f_k) = 0.$$

(e)
$$\int_{-1/2}^{1/2} \mathcal{F}(f) df = 1.$$

 $\mathcal{F}(f)$ is symmetric about the origin and consists of a broad central peak ("lobe") and N-2 sidelobes which decrease as f increases. From (a), (c) and (e) it follows that as $N \to \infty$, $\mathcal{F}(f)$ acts as a *Dirac* δ *function*, with an infinite spike at f = 0.

Session 3: Time Series Analysis

79/ 171

For a process with large dynamic range, defined as

$$10\log_{10}\left(\frac{\max_{f} S(f)}{\min_{f} S(f)}\right)$$

as the expected value of the periodogram is a convolution of Féjer's kernel and the true spectrum, power from parts of the spectrum where S(f) is large can "leak" via the sidelobes to other frequencies where S(f) is small.

Session 3: Time Series Analysis

Bias reduction – Tapering

To reduce the bias in the periodogram we can use a technique called tapering.

Let X_1, X_2, \ldots, X_N be a portion of length N of a zero mean stationary process with sdf S(f). We form the product $\{h_tX_t\}$ where $\{h_t\}$ is a sequence of real-valued constants called a data taper . Define

$$J(f) = \sum_{t=1}^{N} h_t X_t e^{-i2\pi ft} \quad |f| \le 1/2.$$

Session 3: Time Series Analysis

By the spectral representation theorem,

$$X_t = \int_{-1/2}^{1/2} e^{i2\pi f't} \, dZ(f'),$$

so that,

$$J(f) = \sum_{t=1}^{N} h_t \left(\int_{-1/2}^{1/2} e^{i2\pi f't} dZ(f') \right) e^{-i2\pi ft}$$

= $\int_{-1/2}^{1/2} \sum_{t=1}^{N} h_t e^{-i2\pi (f-f')t} dZ(f') = \int_{-1/2}^{1/2} H(f-f') dZ(f'),$

where,

$$H(f) = \sum_{t=1}^{N} h_t e^{-i2\pi ft} \quad \text{i.e.,} \quad \{h_t\} \longleftrightarrow H(f).$$

Session 3: Time Series Analysis

æ

Let,

$$\hat{S}^{(d)}(f) = |J(f)|^2 = \left|\sum_{t=1}^N h_t X_t e^{-i2\pi f t}\right|^2$$

Then,

 $|J(f)|^2$

$$= J^*(f)J(f)$$

$$= \int_{-1/2}^{1/2} H^*(f-f') \, dZ^*(f') \int_{-1/2}^{1/2} H(f-f'') \, dZ(f'').$$

.

Session 3: Time Series Analysis

Hence

$$E\{\hat{S}^{(d)}(f)\} = E\{|J(f)|^2\} = \int_{-1/2}^{1/2} |H(f - f')|^2 S(f') df'$$
$$= \int_{-1/2}^{1/2} \mathcal{H}(f - f') S(f') df',$$

where $H(f - f') = |H(f - f')|^2$, i.e.,

$$\mathcal{H}(f) = \left|\sum_{t=1}^{N} h_t e^{-i2\pi f t}\right|^2$$

~

•

э

Session 3: Time Series Analysis

We take,

$$\sum_{t=1}^N h_t^2 = 1.$$

A spectral estimator of the form of $\hat{S}^{(d)}(f)$ is called a *direct* spectral estimator (hence the (d)).

^ /

Note, if
$$h_t = \frac{1}{\sqrt{N}}$$
 for $1 \le t \le N$, then

$$\hat{S}^{(d)}(f)=\hat{S}^{(p)}(f)$$
 and $\mathcal{H}(f)=\mathcal{F}(f),$

i.e., $\hat{S}^{(d)}(f)$ is the same as the periodogram, and $\mathcal{H}(f)$ is the same as Féjer's kernel.

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

The key idea behind tapering is to select $\{h_t\}$ so that $\mathcal{H}(f)$ has much lower sidelobes that $\mathcal{F}(f)$. Recall that $\mathcal{F}(f)$ corresponds to a rectangular taper

$$h_t = \left\{ egin{array}{cc} rac{1}{\sqrt{N}} & ext{for} & 1 \leq t \leq N, \ 0 & ext{otherwise}. \end{array}
ight.$$

There is thus a sharp discontinuity between where the taper is "ON" $(1 \le t \le N)$ and where it is "OFF". Tapering effectively creates a smooth transition at the ends of the data.

Session 3: Time Series Analysis

Parametric model fitting

We focus on AR(p) models, for which the sdf is

$$S(f) = \frac{\sigma^2}{|1 - \phi_{1,p}e^{-i2\pi f} - \ldots - \phi_{p,p}e^{-i2\pi fp}|^2}.$$

This class of models is appealing for several reasons.

- (i) Any time series with a purely continuous sdf can be approximated well by an AR(p) model if p is large enough.
- (ii) There exist efficient algorithms for fitting AR(p) models to time series.
- (iii) Quite a few physical phenomena are reverberant and hence an AR model is naturally appropriate.

Session 3: Time Series Analysis

The Yule-Walker Method

We start by multiplying the defining equation by X_{t-k} :

$$X_t X_{t-k} = \sum_{j=1}^p \phi_{j,p} X_{t-j} X_{t-k} + \epsilon_t X_{t-k}.$$

Taking expectations, for k > 0:

$$s_k = \sum_{j=1}^p \phi_{j,p} s_{k-j}.$$

< ∃ >

Session 3: Time Series Analysis

Let
$$k = 1, 2, \dots, p$$
 and recall that $s_{-\tau} = s_{\tau}$ to obtain

$$s_{1} = \phi_{1,p}s_{0} + \phi_{2,p}s_{1} + \dots + \phi_{p,p}s_{p-1}$$

$$s_{2} = \phi_{1,p}s_{1} + \phi_{2,p}s_{0} + \dots + \phi_{p,p}s_{p-2}$$

$$\vdots \qquad \vdots$$

$$s_{p} = \phi_{1,p}s_{p-1} + \phi_{2,p}s_{p-2} + \dots + \phi_{p,p}s_{0}$$

or in matrix notation, $\gamma_p = \Gamma_p \phi_p$, where $\gamma_p = [s_1, s_2, \dots, s_p]^T$, $\phi_p = [\phi_{1,p}, \phi_{2,p}, \dots, \phi_{p,p}]^T$ and

$$\Gamma_{p} = \begin{bmatrix} s_{0} & s_{1} & \dots & s_{p-1} \\ s_{1} & s_{0} & \dots & s_{p-2} \\ \vdots & \vdots & & \vdots \\ s_{p-1} & s_{p-2} & \dots & s_{0} \end{bmatrix}$$

< ∃ >

Session 3: Time Series Analysis

Suppose we don't know the $\{s_{\tau}\}$, but the mean is zero, then take

$$\hat{s}_{ au} = rac{1}{N}\sum_{t=1}^{N-| au|}X_tX_{t+| au|},$$

and substitute these for the s_{τ} 's in γ and Γ_p to obtain $\hat{\gamma}_p, \hat{\Gamma}_p$, from which we estimate ϕ_p as $\hat{\phi}_p$:

$$\hat{\phi}_{
m p} = \Gamma^{-1} \hat{\gamma}_{
m p}$$

Session 3: Time Series Analysis

Finally, we need to estimate σ_{ϵ}^2 . To do so, we multiply the defining equation by X_t and take expectations to obtain

$$s_0 = \sum_{j=1}^{p} \phi_{j,p} s_j + E\{\epsilon_t X_t\} = \sum_{j=1}^{p} \phi_{j,p} s_j + \sigma_{\epsilon}^2,$$

so that as an estimator for σ_{ϵ}^2 we take

$$\hat{\sigma}_{\epsilon}^2 = \hat{s}_o - \sum_{j=1}^{p} \hat{\phi}_{j,p} \hat{s}_j.$$

The estimators $\hat{\phi}_p$ and $\hat{\sigma}_{\epsilon}^2$ are called the Yule-Walker estimators of the AR(p) process.

Session 3: Time Series Analysis

The estimate of the sdf resulting is

$$\hat{S}(f) = rac{\hat{\sigma}_{\epsilon}^2}{\left|1 - \sum_{j=1}^p \hat{\phi}_{j,p} e^{-i2\pi f j}
ight|^2}.$$

There are important modifications which we can make to this approach: we could use for $\{\hat{s}_{\tau}\}$ a modified autocovariance incorporating tapering:

$$\hat{s}_ au = \sum_{t=1}^{N-| au|} h_t X_t h_{t+| au|} X_{t+| au|}.$$

Session 3: Time Series Analysis

Levinson-Durbin

To invert $\hat{\Gamma}_p$ by brute force matrix inversion requires $O(p^3)$ operations.

Fortunately, there is an algorithm due to Levinson and Durbin which takes advantage of the highly structured nature of the Toeplitz matrix, and carries out the estimation in $O(p^2)$ or fewer operations.

Session 3: Time Series Analysis

Least squares estimation of the $\{\phi_{j,p}\}$ Let $\{X_t\}$ be a zero-mean AR(p) process, i.e.,

$$X_{t} = \phi_{1,p} X_{t-1} + \phi_{2,p} X_{t-2} + \ldots + \phi_{p,p} X_{t-p} + \epsilon_{t}.$$

We can formulate an appropriate least squares model in terms of data X_1, X_2, \ldots, X_N as follows:

$$\mathbf{X}_{F}=F\phi+\epsilon_{F},$$

where,

$$F = \begin{bmatrix} X_{p} & X_{p-1} & \dots & X_{1} \\ X_{p+1} & X_{p} & \dots & X_{2} \\ \vdots & & & \vdots \\ X_{N-1} & X_{N-2} & \dots & X_{N-p} \end{bmatrix}$$

Session 3: Time Series Analysis

æ

<ロト <部ト < 注ト < 注ト

and,

$$\mathbf{X}_{F} = \begin{bmatrix} X_{p+1} \\ X_{p+2} \\ \vdots \\ X_{N} \end{bmatrix}; \quad \phi = \begin{bmatrix} \phi_{1,p} \\ \phi_{2,p} \\ \vdots \\ \phi_{p,p} \end{bmatrix}; \quad \epsilon_{F} = \begin{bmatrix} \epsilon_{p+1} \\ \epsilon_{p+2} \\ \vdots \\ \epsilon_{N} \end{bmatrix}.$$

Session 3: Time Series Analysis

We can thus estimate ϕ by finding that ϕ such that

$$SS_F(\phi) = \sum_{t=p+1}^{N} \left(X_t - \sum_{k=1}^{p} \phi_{k,p} X_{t-k} \right)^2 \quad \left[= \sum_{t=p+1}^{N} \epsilon_t^2 \right]$$
$$= (\mathbf{X}_F - F\phi)^T (\mathbf{X}_F - F\phi)$$

is minimized. If we denote the vector that minimizes the above as $\hat{\phi}_F$, standard least squares theory tells us that it is given by

$$\hat{\phi}_F = (F^T F)^{-1} F^T \mathbf{X}_F.$$

Session 3: Time Series Analysis

We can estimate the innovations variance σ_F^2 by the usual estimator of the residual variation, namely

$$\hat{\sigma}_F^2 = \frac{(\mathbf{X}_F - F\hat{\phi}_F)^T (\mathbf{X}_F - F\hat{\phi}_F)}{(N - 2p)}$$

(Note: there are N - p effective observations, and p parameters are estimated).

The estimator $\hat{\phi}_F$ is known as the *forward* least squares estimator of ϕ .

Session 3: Time Series Analysis

Using a *time reversed* formulation;

$$\mathbf{X}_B = B\phi + \boldsymbol{\epsilon}_B,$$

where,

$$B = \begin{bmatrix} X_2 & X_3 & \dots & X_{p+1} \\ X_3 & X_4 & \dots & X_{p+2} \\ \vdots & & \vdots \\ X_{N-p+1} & X_{N-p+2} & \dots & X_N \end{bmatrix}$$

and,

$$\mathbf{X}_{B} = \begin{bmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{N-p} \end{bmatrix} \quad \text{and} \quad \boldsymbol{\epsilon}_{B} = \begin{bmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{N-p} \end{bmatrix}.$$

Session 3: Time Series Analysis

98/171

The function of ϕ to be minimized is now

$$SS_B(\phi) = \sum_{t=1}^{N-p} \left(X_t - \sum_{k=1}^p \phi_{k,p} X_{t+k} \right)^2$$
$$= (\mathbf{X}_B - B\phi)^T (\mathbf{X}_B - B\phi)$$

The *backward* least squares estimator of ϕ is then given by

$$\hat{\phi}_B = (B^T B)^{-1} B^T \mathbf{X}_B$$

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

The corresponding estimator of the innovations variance σ_B^2 is

$$\hat{\sigma}_B^2 = \frac{(\mathbf{X}_B - B\phi)^T (\mathbf{X}_B - B\phi)}{(N - 2p)}$$

The vector $\hat{\phi}_{FB}$ that minimizes

 $SS_F(\phi) + SS_B(\phi)$

is called the *forward/backward* least squares estimator, and Monte-Carlo studies indicate that it performs better than forward or backward least squares.

Session 3: Time Series Analysis

Notes:

- φ̂_{FB}, φ̂_B and φ̂_F produce estimated models which need not be stationary. This may be a concern for prediction, however, for spectral estimation, the parameter values will still produce a valid sdf (i.e., nonnegative everywhere, symmetric about the origin and integrates to a finite number).
- The Yule-Walker estimates can be formulated as a least squares problem; consider adding zeros to our observations X_1, X_2, \ldots, X_N , both at the beginning and end of the data, to give:

$$\mathbf{X}_{YW} = W\phi + \epsilon_{YW},$$

100/171

Session 3: Time Series Analysis

 $101/\ 171$

э

Session 3: Time Series Analysis

Therefore

Session 3: Time Series Analysis

æ

<ロト <部ト < 注ト < 注ト

$$\frac{1}{N}W^{T}W = \begin{bmatrix} \hat{s}_{0}^{(p)} & \hat{s}_{1}^{(p)} & \dots & \hat{s}_{p-1}^{(p)} \\ \hat{s}_{1}^{(p)} & \ddots & & \\ \vdots & \ddots & \ddots & \\ \hat{s}_{p-1}^{(p)} & \dots & \dots & \hat{s}_{0}^{(p)} \end{bmatrix} = \hat{\Gamma}_{p}$$

Session 3: Time Series Analysis

and

$$\frac{1}{N} W^{\mathsf{T}} \mathbf{X}_{YW} = \begin{bmatrix} \hat{s}_{1}^{(p)} \\ \vdots \\ \hat{s}_{p}^{(p)} \end{bmatrix} = \hat{\gamma}_{p},$$

so that

$$(W^T W)^{-1} W^T \mathbf{X}_{YW} = (\hat{\Gamma}_{\rho})^{-1} \hat{\gamma}_{\rho}.$$

which is identical to the Yule-Walker estimate.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Session 3: Time Series Analysis

Forecasting

Suppose we wish to predict the value of X_{t+l} of a process, given $X_t, X_{t-1}, X_{t-2}, \ldots$ Let the appropriate model for $\{X_t\}$ be an ARMA(p, q) process:

$$\Phi(B)X_t = \Theta(B)\epsilon_t.$$

Consider a forecast $X_t(I)$ of X_{t+1} (an *I*-step ahead forecast) which is a linear combination of $X_t, X_{t-1}, X_{t-2}, \ldots$:

$$X_t(I) = \sum_{k=0}^{\infty} \pi_k X_{t-k}.$$

Session 3: Time Series Analysis

Note: this assumes a semi-infinite realization of $\{X_t\}$. Let us now assume that $\{X_t\}$ can be written as a one-sided linear process, so that

$$X_t = \sum_{k=0}^{\infty} \psi_k \epsilon_{t-k} = \Psi(B) \epsilon_t,$$

and

$$X_{t+l} = \sum_{k=0}^{\infty} \psi_k \epsilon_{t+l-k} = \Psi(B) \epsilon_{t+l}.$$

Hence,

$$X_t(I) = \sum_{k=0}^{\infty} \pi_k X_{t-k} = \sum_{k=0}^{\infty} \pi_k \Psi(B) \epsilon_{t-k} = \Pi(B) \Psi(B) \epsilon_t.$$

< 47 ▶
Session 3: Time Series Analysis

Let $\delta(B) = \Pi(B)\Psi(B)$ so that,

$$X_t(I) = \delta(B)\epsilon_t = \sum_{k=0}^{\infty} \delta_k \epsilon_{t-k}.$$

Now,

$$X_{t+l} = \sum_{k=0}^{\infty} \psi_k \epsilon_{t+l-k} = \sum_{k=0}^{l-1} \psi_k \epsilon_{t+l-k} + \sum_{k=l}^{\infty} \psi_k \epsilon_{t+l-k} = (A) + (B)$$

- (A) Involves future ϵ_t s, represents the "unpredictable" part of X_{t+1} .
- (B) Depends only on past and present values of ϵ_t , represents the "predictable" part of X_{t+l} .

Session 3: Time Series Analysis

A B + A B +

< A ▶

Hence we would expect

$$X_t(I) = \sum_{k=I}^{\infty} \psi_k \epsilon_{t+I-k} = \sum_{j=0}^{\infty} \psi_{j+I} \epsilon_{t-j}.$$

so that $\delta_k \equiv \psi_{k+l}$. This can be readily proved. For linear least squares, we want to minimize,

$$E\{(X_{t+l} - X_t(l))^2\} = E\left\{\left(\sum_{k=0}^{l-1} \psi_k \epsilon_{t+l-k} + \sum_{k=0}^{\infty} [\psi_{k+l} - \delta_k] \epsilon_{t-k}\right)^2\right\}$$
$$= \sigma_{\epsilon}^2\left\{\left(\sum_{k=0}^{l-1} \psi_k^2\right) + \sum_{k=0}^{\infty} (\psi_{k+l} - \delta_k)^2\right\}.$$

Session 3: Time Series Analysis

The first term is independent of the choice of the $\{\delta_k\}$ and the second term is clearly minimized by choosing $\delta_k = \psi_{k+l}, k = 0, 1, 2, \ldots$ as expected. With this choice of $\{\delta_k\}$ the second term vanishes, and we have,

$$\sigma^{2}(I) = E\{(X_{t+I} - X_{t}(I))^{2}\} \\ = \sigma_{\epsilon}^{2} \sum_{k=0}^{I-1} \psi_{k}^{2},$$

which is known as the *I*-step prediction variance.

Session 3: Time Series Analysis

When I = 1, $\delta_k = \psi_{k+1}$,

$$\begin{aligned} X_t(1) &= \delta_0 \epsilon_t + \delta_1 \epsilon_{t-1} + \delta_2 \epsilon_{t-2} + \dots \\ &= \psi_1 \epsilon_t + \psi_2 \epsilon_{t-1} + \psi_3 \epsilon_{t-2} + \dots \\ X_{t+1} &= \psi_0 \epsilon_{t+1} + \psi_1 \epsilon_t + \psi_2 \epsilon_{t-1} + \dots \end{aligned}$$

so that,

$$X_{t+1} - X_t(1) = \psi_0 \epsilon_{t+1} = \epsilon_{t+1} \quad \text{since} \quad \psi_0 = 1.$$

(日) (同) (三) (三)

э

Session 3: Time Series Analysis

Hence ϵ_{t+1} can be thought of as the "one step prediction error". Also of course,

$$X_{t+1} = X_t(1) + \epsilon_{t+1}$$

so that ϵ_{t+1} is the essentially "new" part of X_{t+1} which is not linearly dependent on past observations. The sequence $\{\epsilon_t\}$ is often called the innovations process of $\{X_t\}$, and σ_{ϵ}^2 is often called the innovations variance.

Session 3: Time Series Analysis

If we wish to write $X_t(I)$ explicitly as a function of $X_t, X_{t-1}, ...$ then we note first that,

$$X_t(I) = \sum_{k=0}^{\infty} \delta_k \epsilon_{t-k} = \sum_{k=0}^{\infty} \psi_{k+l} \epsilon_{t-k},$$

so that,

$$X_t(I) = \Psi^{(I)}(B)\epsilon_t,$$
 say

where,

$$\Psi^{(I)}(z) = \sum_{k=0}^{\infty} \psi_{k+I} z^k.$$

- **→** → **→**

Session 3: Time Series Analysis

Assuming that $\Psi(z)$ is analytic in and on the unit circle (stationary and invertible) then we can write

$$X_t = \Psi(B) \epsilon_t$$
 and $\epsilon_t = \Psi^{-1}(B) X_t,$

and thus

$$X_t(I) = \Psi^{(I)}(B)\epsilon_t = \Psi^{(I)}(B)\Psi^{-1}(B)X_t$$

= $G^{(I)}(B)X_t$, say

with,

$$G^{(l)}(z) = \Psi^{(l)}(z)\Psi^{-1}(z).$$

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

If we consider the sequence of predictors $X_t(I)$ for different values of t (with I fixed) then this forms a new process, which since

$$X_t(I) = G^{(I)}(B)X_t,$$

may be regarded as the output of a linear filter acting on the $\{X_t\}$. Since,

$$X_t(l) = \left(\sum_u g_u^{(l)} B^u\right) X_t = \sum_u g_u^{(l)} X_{t-u},$$

we know that the transfer function is

$$G^{(l)}(f) = \sum_{u} g^{(l)}_{u} e^{-i2\pi f u}.$$

Session 3: Time Series Analysis

Example: AR(1)

$$X_t - \phi_{1,1} X_{t-1} = \epsilon_t \quad |\phi_{1,1}| < 1.$$

Then

$$X_t = (1 - \phi_{1,1}B)^{-1} \epsilon_t.$$

So,

$$\begin{split} \Psi(z) &= 1 + \phi_{1,1} z + \phi_{1,1}^2 z^2 + \dots \\ &= \psi_0 + \psi_1 z + \psi_2 z^2 + \dots \end{split}$$

i.e., $\psi_k = \phi_{1,1}^k$.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Session 3: Time Series Analysis

Hence,

$$X_t(l) = \sum_{k=0}^{\infty} \delta_k \epsilon_{t-k} = \sum_{k=0}^{\infty} \psi_{k+l} \epsilon_{t-k}$$
$$= \sum_{k=0}^{\infty} \phi_{1,1}^{k+l} \epsilon_{t-k} = \phi_{1,1}^l \sum_{k=0}^{\infty} \phi_{1,1}^k \epsilon_{t-k}$$
$$= \phi_{1,1}^l X_t.$$

The *I*-step prediction variance is

$$\sigma^{2}(l) = \sigma_{\epsilon}^{2} \left(\sum_{k=0}^{l-1} \psi_{k}^{2} \right) = \sigma_{\epsilon}^{2} \left(\sum_{k=0}^{l-1} \phi_{1,1}^{2k} \right) = \sigma_{\epsilon}^{2} \frac{(1 - \phi_{1,1}^{2l})}{(1 - \phi_{1,1}^{2})}.$$

(日) (同) (三) (三)

э

Session 3: Time Series Analysis

Alternatively,

$$X_t(I) = G^{(I)}(B)X_t,$$

with $G^{(\prime)}(z) = \Psi^{(\prime)}(z) \Psi^{-1}(z)$. But,

$$\Psi^{(l)}(z) = \sum_{k=0}^{\infty} \psi_{k+l} z^k = \sum_{k=0}^{\infty} \phi_{1,1}^{k+l} z^k,$$

and,

$$\Psi^{-1}(z) = 1 - \phi_{1,1} z,$$

so that

$$G^{(\prime)}(z) = (\phi_{1,1}^{\prime} + \phi_{1,1}^{\prime+1}z + \phi_{1,1}^{\prime+2}z^2 + \ldots)(1 - \phi_{1,1}z) = \phi_{1,1}^{\prime},$$

i.e., $X_t(l) = \phi'_{1,1}X_t$ as before.

< A >

.⊒ . ►

Session 3: Time Series Analysis

We have demonstrated that for the AR(1) model the linear least squares predictor of X_{t+l} depends only on the most recent observation, X_t , and does not involve X_{t-1}, X_{t-2}, \ldots , which is what we would expect bearing in mind the Markov nature of the AR(1) model. As $l \to \infty$, $X_t(l) \to 0$, since $X_t(l) = \phi_{1,1}^l X_t$ and $|\phi_{1,1}| < 1$. Also, the *l*-step prediction variance,

$$\sigma^2(l) \rightarrow \frac{\sigma_\epsilon^2}{(1-\phi_{1,1}^2)} = \operatorname{Var}\left[X_t\right].$$

Session 3: Time Series Analysis

In fact the solution to the forecasting problem for the AR(1) model can be derived directly from the difference equation,

$$X_t - \phi_{1,1} X_{t-1} = \epsilon_t.$$

by setting future innovations ϵ_t to be zero:

$$X_t(1) = \phi_{1,1}X_t + 0$$

$$X_t(2) = \phi_{1,1}X_t(1) + 0$$

:

$$X_t(l) = \phi_{1,1}X_t(l-1) + 0$$

so that,

$$X_t(I) = \phi_{1,1}^I X_t.$$

Session 3: Time Series Analysis

For general AR(p) processes it turns out that $X_t(I)$ depends only on the last p observed values of $\{X_t\}$, and may be obtained by solving the AR(p) difference equation with the future $\{\epsilon_t\}$ set to zero. For example for an AR(p) process and I = 1,

$$X_t(1) = \phi_{1,p}X_t + \ldots + \phi_{p,p}X_{t-p+1}.$$

Session 3: Time Series Analysis

Example: ARMA(1,1)

$$(1 - \phi_{1,1}B)X_t = (1 - \theta_{1,1}B)\epsilon_t.$$

Take $\phi_{1,1} = \phi$ and $\theta_{1,1} = \theta$,

$$X_t = rac{(1- heta B)}{(1-\phi B)}\epsilon_t = \Psi(B)\epsilon_t.$$

So,

$$\begin{split} \Psi(z) &= (1 - \theta z)(1 + \phi z + \phi^2 z^2 + \phi^3 z^3 + \ldots) \\ &= 1 + (\phi - \theta)z + \phi(\phi - \theta)z^2 + \ldots + \phi^{l-1}(\phi - \theta)z^l + \ldots \\ &= \psi_0 + \psi_1 z + \psi_2 z^2 + \ldots \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Session 3: Time Series Analysis

So,

$$\psi_I = \left\{egin{array}{cc} 1 & & I=0 \ \phi^{I-1}(\phi- heta) & & I\geq 1 \end{array}
ight.$$

The *I*-step prediction variance is

$$\begin{aligned} \sigma^{2}(l) &= \sigma_{\epsilon}^{2} \left(\sum_{k=0}^{l-1} \psi_{k}^{2} \right) = \sigma_{\epsilon}^{2} \left(1 + \sum_{k=1}^{l-1} \psi_{k}^{2} \right) \\ &= \sigma_{\epsilon}^{2} \left(1 + (\phi - \theta)^{2} \sum_{k=1}^{l-1} \phi^{2k-2} \right) \\ &= \sigma_{\epsilon}^{2} \left(1 + (\phi - \theta)^{2} \frac{(1 - \phi^{2l-2})}{(1 - \phi^{2})} \right). \end{aligned}$$

(日) (同) (三) (三)

э

Session 3: Time Series Analysis

æ

(日) (同) (三) (三)

Now,

$$\begin{split} \Psi^{(l)}(z) &= \sum_{k=0}^{\infty} \psi_{k+l} z^k = \phi^{l-1}(\phi - \theta) \sum_{k=0}^{\infty} \phi^k z^k = \phi^{l-1}(\phi - \theta)(1 - \phi z) \\ \Psi^{-1}(z) &= \frac{(1 - \phi z)}{(1 - \theta z)}, \end{split}$$

so therefore

$$\begin{aligned} G^{(l)}(z) &= \Psi^{(l)}(z)\Psi^{-1}(z) = \phi^{l-1}(\phi-\theta)(1-\theta z)^{-1} \\ X_t(l) &= G^{(l)}(B)X_t = \phi^{l-1}(\phi-\theta)(1-\theta B)^{-1}X_t. \end{aligned}$$

Session 3: Time Series Analysis

э

(日) (同) (三) (三)

Consider I = 1,

$$\begin{aligned} X_t(1) &= (\phi - \theta)(1 - \theta B)^{-1} X_t \\ &= (\phi - \theta)(1 + \theta B + \theta^2 B^2 + \theta^3 B^3 + \ldots) X_t \\ &\vdots \\ &= (\phi - \theta) X_t + \theta(\phi - \theta) X_{t-1} + \theta^2 (\phi - \theta) X_{t-2} + \ldots \\ &= \phi X_t - \theta \left[X_t - (\phi - \theta) X_{t-1} - \ldots - \theta^{k-1} (\phi - \theta) X_{t-k} - \ldots \right] \end{aligned}$$

Session 3: Time Series Analysis

But consider,

$$\begin{aligned} \epsilon_t &= \Psi^{-1}(B)X_t = (1 - \phi B)(1 - \theta B)^{-1}X_t \\ &= (1 - \phi B)(1 + \theta B + \theta^2 B^2 + \theta^3 B^3 + \dots)X_t \\ &\vdots \\ &= X_t - (\phi - \theta)X_{t-1} - \dots - \theta^{k-1}(\phi - \theta)X_{t-k} - \dots \end{aligned}$$

Therefore,

$$X_t(1) = \phi X_t - \theta \epsilon_t.$$

So can again be derived directly from the difference equation,

$$X_t = \phi X_{t-1} - \theta \epsilon_{t-1} + \epsilon_t,$$

by setting future innovations ϵ_t to zero.

Session 3: Time Series Analysis

MA(1) (invertible)

$$X_t = \epsilon_t - \theta_{1,1} \epsilon_{t-1} \qquad |\theta_{1,1}| < 1.$$

So,

$$\Psi(z) = \psi_0 + \psi_1 z + \psi_2 z^2 + \dots \\ = 1 - \theta_{1,1} z$$

 $\label{eq:2.1} {\rm Hence}, \ \psi_{\rm 0} = {\rm 1}; \quad \psi_{\rm 1} = -\theta_{{\rm 1},{\rm 1}}; \quad \psi_{k} = {\rm 0}, \ \ k \geq 2.$

$$X_t(I) = \sum_{k=0}^{\infty} \psi_{k+l} \epsilon_{t-k} = \Psi^{(l)}(B) \epsilon_t$$
$$= \psi_l \epsilon_t + \psi_{l+1} \epsilon_{t-1} + \dots$$

イロト イポト イヨト イヨト

э

Session 3: Time Series Analysis

æ

(日) (同) (三) (三)

So,

$$\Psi^{(I)}(z) = \sum_{k=0}^{\infty} \psi_{k+l} z^{k} = \psi_{l} z^{0} + \psi_{l+1} z^{1}$$
$$= \begin{cases} -\theta_{1,1} & l = 1\\ 0 & l \ge 2. \end{cases}$$

Hence,

$$G^{(I)}(z) = \Psi^{(I)}(z) \Psi^{-1}(z) = \left\{egin{array}{cc} - heta_{1,1}(1- heta_{1,1}z)^{-1} & I=1\ 0 & I\geq 2 \end{array}
ight.$$

Session 3: Time Series Analysis

э

(日) (同) (三) (三)

Thus, for l = 1,

$$G^{(1)}(z) = - heta_{1,1}(1+ heta_{1,1}z+ heta_{1,1}^2z^2+\ldots),$$

and hence,

$$X_t(1) = G^{(1)}(B)X_t = -\sum_{k=0}^{\infty} \theta_{1,1}^{k+1} X_{t-k}$$

Session 3: Time Series Analysis

Forecast errors and updating

We have seen that when $\delta_{\mathbf{k}} = \psi_{\mathbf{k}+\mathbf{l}}$ the forecast error is

$$\sum_{k=0}^{l-1}\psi_k\epsilon_{t+l-k}.$$

Let,

$$e_t(l) = X_{t+l} - X_t(l) = \sum_{k=0}^{l-1} \psi_k \epsilon_{t+l-k}.$$

Then,

$$e_t(l+m) = \sum_{j=0}^{l+m-1} \psi_j \epsilon_{t+l+m-j}.$$

< 同 ▶

< ∃ >

Session 3: Time Series Analysis

æ

(日) (同) (三) (三)

Clearly,

$$E\{e_t(l)\} = E\{e_t(l+m)\} = 0.$$

Hence,

$$Cov\{e_t(l), e_t(l+m)\} = E\{e_t(l)e_t(l+m)\} = \sigma_{\epsilon}^2 \sum_{k=0}^{l-1} \psi_k \psi_{k+m}.$$

and

$$Var\{e_t(I)\} = \sigma_{\epsilon}^2 \sum_{k=0}^{I-1} \psi_k^2 = \sigma^2(I).$$

Session 3: Time Series Analysis

E.g.,

$$Cov\{e_t(1), e_t(2)\} = \sigma_\epsilon^2 \psi_1.$$

This could be quite large – should the forecast for a series wander of target, it is possible for it to remain there in the short run since forecast errors can be quite highly correlated. Hence, when X_{t+1} becomes available we should update the forecast.

$$\begin{aligned} X_{t+1}(I) &= \sum_{k=0}^{\infty} \psi_{k+l} \epsilon_{t+1-k} \\ &= \psi_l \epsilon_{t+1} + \psi_{l+1} \epsilon_t + \psi_{l+2} \epsilon_{t-1} + \dots, \end{aligned}$$

Session 3: Time Series Analysis

$$X_t(l+1) = \sum_{k=0}^{\infty} \psi_{k+l+1} \epsilon_{t-k}$$

= $\psi_{l+1} \epsilon_t + \psi_{l+2} \epsilon_{t-1} + \psi_{l+3} \epsilon_{t-2} + \dots,$

and,

$$\begin{array}{rcl} X_{t+1}(I) &=& X_t(I+1) + \psi_I \epsilon_{t+1} \\ &=& X_t(I+1) + \psi_I(X_{t+1} - X_t(1)). \end{array}$$

Hence, to forecast X_{t+l+1} we can modify the l+1- step ahead forecast at time t by producing an l-step ahead forecast at time t+1 using X_{t+1} as it becomes available.

< D > < A > < B >

Session 3: Time Series Analysis

Non-stationarity and Unit Roots

Many financial/econometric series are *trending*.

Two cases commonly considered;

- 1 Stationary process with **deterministic** trend (shocks have temporary effects)
- 2 Process with **stochastic** trend or **unit root** (shocks have permanent effects)

The distinction between the two cases is practically important for forecasting and statistical issues.

Session 3: Time Series Analysis

Trend Stationarity

Example: Consider an AR(1) model with *deterministic linear trend*

$$Y_t = \phi Y_{t-1} + \delta + \gamma t + \epsilon_t \qquad t = 1, \dots, N,$$

with $|\phi| < 1$. Then, as $N \longrightarrow \infty$,

$$E[Y_t] \longrightarrow \mu + \mu_1 t \qquad Var[Y_t] \longrightarrow \frac{\sigma^2}{1 - \phi^2}$$

using the MA representation.

< A ▶

- - E + - E +

Session 3: Time Series Analysis

• Y_t is not stationary, but the deviation from the mean

$$X_t = Y_t - \mu - \mu_1 t$$

is stationary; Y_t is termed *trend-stationary*.

- The stochastic part is stationary, and shocks have transitory effects.
- Y_t is mean-reverting, with attractor $\mu + \mu_1 t$.

We can analyze X_t as a stationary process.

Session 3: Time Series Analysis

Unit Root Processes

Example: Consider an AR(1) model with a *unit root* $\phi = 1$

$$Y_t = Y_{t-1} + \delta + \epsilon_t$$

or

$$BY_t = \delta + \epsilon_t.$$

- z = 1 is a root of the AR polynomial $\Phi(z) = 1 z$.
- Y_t is non-stationary.
- BY_t is stationary, Y_t termed a *difference stationary process*.
- Y_t is termed an *integrated first order process*, or an I(1) process.
- A process of *integrated order* d is denoted I(d).

Session 3: Time Series Analysis

Note that

$$Y_t = Y_0 + \sum_{i=1}^t BY_t = Y_0 + \delta t + \sum_{i=1}^t \epsilon_t$$

with moments

$$E[Y_t] = Y_0 + \delta t \qquad V[Y_t] = t\sigma^2$$

- Y₀ remains in the process.
- *ϵ_t* accumulates as a random walk, termed a *stochastic trend*.
 These shocks have a permanent effect.
- δ forms a deterministic linear trend.
- This model is termed a random walk with drift.
- Variance grows with t.
- Not mean-reverting.

Session 3: Time Series Analysis

Unit Root Tests

We consider null and alternative hypotheses to distinguish between stationarity and non-stationarity.

- (1) Dickey-Fuller Test
 - H_0 is a unit root, H_1 is stationarity
- (2) KPSS Test
 - H_0 is stationarity, H_1 is a unit root

Note: In practice, distinguishing $\phi=$ 0.99 from $\phi=1$ is often difficult \ldots

A B > A B >

Session 3: Time Series Analysis

139/ 171

Dickey-Fuller Test Set up an AR model for de-trended process X_t and test $\phi = 1$.

• Consider AR(1) model

$$X_t = \theta X_{t-1} + \epsilon_t$$

We wish to test

 $H_0: \phi = 1$ against $H_1: \phi < 1$.

• Rewrite model as

$$BX_t = (\phi - 1)X_{t-1} + \epsilon_t = \pi X_{t-1} + \epsilon_t$$

with $\pi = \phi - 1 = \Phi(1)$, say, and the hypotheses as

 $H_0: \pi = 0$ against $H_1: \pi < 0.$

3

Session 3: Time Series Analysis

The Dickey-Fuller (DF) test is the Wald t-test for H_0 with test statistic t_{DF}

$$t_{DF} = rac{\widehat{\phi} - 1}{se(\widehat{\phi})} = rac{\widehat{\pi}}{se(\widehat{\pi})}$$

- The asymptotic null distribution is non-normal, and depends on the deterministic part of the model.
- The asymptotic null only holds if ϵ_t are IID.
- If not IID, need to include further terms in AR representation.
- MA and ARMA models handled similarly.

- - E + - E +

Discrete Time Stationary Processes Spectral Representations Non-stationarity and Unit Roots

Session 3: Time Series Analysis

Extension to AR(*p*): The **Augmented Dickey-Fuller** (ADF) Test.

Example: AR(3).

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \phi_{3}X_{t-3} + \epsilon_{t}$$

A unit root of

$$\Phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \phi_3 z^3 = 0$$

corresponds to $\Phi(1) = 0$.

Test is achieved by rewriting the model as

David A. Stephens

$$BX_t = \pi X_{t-1} + c_1 B X_{t-1} + c_2 B X_{t-2} + \epsilon_t$$

where

$$\pi = \phi_1 + \phi_2 + \phi_3 - 1 = -\phi(1)$$

$$c_1 = -(\phi_2 + \phi_3)$$
David A. Stephens Statistical Inference and Methods

Session 3: Time Series Analysis

• Null hypothesis $\Phi(1) = 0$ corresponds to

 $H_0: \pi = 0$ against $H_1: \pi < 0$.

- The ADF test is the Wald *t*-test of this hypothesis.
- Need model selection to choose number of lags.
- Can correct for autocorrelation in ϵ_t use the *Phillips-Perron* test that uses a standard ergodic estimate of the autocorrelation (*Newey-West*).
Note: The deterministic terms in the ADF specification are important, as they influence the asymptotic null distribution.

• if X_t has a non-zero level, use

$$BY_t = \pi Y_{t-1} + c_1 B X_{t-1} + c_2 B X_{t-2} + \delta \epsilon_t$$

• if X_t has a deterministic trend level, use

$$BY_t = \pi Y_{t-1} + c_1 B X_{t-1} + c_2 B X_{t-2} + \delta + \gamma t + \epsilon_t$$

In both cases, can fit model using regression methods.

In both cases, the null distribution changes.

ヨー うくぐ

Session 3: Time Series Analysis

Note: consider the factor representation

$$X_t = \phi X_{t-1} + \epsilon_t$$

$$Y_t = X_t + \mu$$

so that

$$Y_t = \phi Y_{t-1} + (1 - \phi)\mu + \epsilon_t = \phi Y_{t-1} + \delta + \epsilon_t$$

so there is a common factor restriction; if $\phi = 1$,

$$\delta = (1 - \phi)\mu = 0.$$

三 わくの

・ 同 ト ・ ヨ ト ・ ヨ ト

Session 3: Time Series Analysis

This is not imposed by the standard *t*-test; consider

$$Y_t = \phi Y_{t-1} + \delta + \epsilon_t.$$

The hypotheses

$$H_0: \phi = 1$$
 against $H_1: \phi < 1$.

imply

 $\begin{array}{rcl} H_1 & : & Y_t = \mu + \text{ stationary process} \\ H_0 & : & Y_t = Y_0 + \delta t + \text{ stochastic trend.} \end{array}$

that is, two fundamentally different models.

A B > A B >

Session 3: Time Series Analysis

Need to consider the combined null hypothesis

$$H_0^C: \pi = \delta = 0$$

which can be tested by fitting two regressions

$$H_1 : BY_t = \pi Y_{t-1} + \delta + \epsilon_t$$

$$H_0^C : BY_t = \epsilon_t.$$

and carrying out a likelihood ratio test to compare the fits.

Again, the null distribution is non-standard.

- ₹ 🖬 🕨

Alternatively, consider the model with a trend

$$BY_t = \pi Y_{t-1} + \delta + \gamma t + \epsilon_t$$

where the common factor restriction implies that if $\pi = 0$ then $\gamma = 0$. Under the standard null H_0 , the trend will accumulate.

Again need to impose the combined null hypothesis

$$H_0^C: \pi = \gamma = 0$$

which can be tested by fitting two regressions

$$\begin{aligned} H_1 &: BY_t = \pi Y_{t-1} + \delta + \gamma t \epsilon_t \\ H_0^C &: BY_t = \delta + \epsilon_t. \end{aligned}$$

and carrying out a likelihood ratio test to compare the fits.

Again, the null distribution is non-standard.

Session 3: Time Series Analysis

Special Events: Large shocks (breaks, changepoints) have potentially large, permanent effects.

- **One large shock**: may lead to bias toward accepting unit root hypothesis, event of series is stationary.
- Many large shocks: may lead to bias toward accepting stationarity hypothesis. Series may appear mean-reverting even if it is not.

Session 3: Time Series Analysis

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) Test

Assume

$$Y_t = \xi_t + e_t$$

where e_t is stationary and ξ_t is a random walk

$$\xi_t = \xi_{t-1} + v_t$$

where $v_t \sim N(0, \sigma_v^2)$ i.i.d..

• If $\sigma_v^2 = 0$, $\xi_t = \xi_0$ and Y_t is stationary. Thus can test the hypothesis

$$H_0: \sigma_v^2 = 0$$
 against $H_1: \sigma_v^2 > 0.$

The KPSS Test is a (score) test of this hypothesis.

Models For Changing Variance

Objective: obtain better estimates of local variance.

p'th order ARCH(p)

ARCH stands for autoregressive conditionally heteroscedastic

Assume we have a derived time series $\{Y_t\}$ that is (approximately) uncorrelated but has a variance (volatility) that changes through time,

$$Y_t = \sigma_t \varepsilon_t \tag{1}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

where $\{\varepsilon_t\}$ is a white noise sequence with zero mean and unit variance.

Here, σ_t represents the local conditional standard deviation of the process. Note that σ_t is not observable directly.

 $\{Y_t\}$ is ARCH(p) if it satisfies equation (1) and

$$\sigma_t^2 = \alpha + \beta_{1,p} y_{t-1}^2 + \ldots + \beta_{p,p} y_{t-p}^2,$$
 (2)

where $\alpha > 0$ and $\beta_{j,p} \ge 0, j = 1, \dots, p$ (to ensure the variance remains positive), and y_{t-1} is the observed value of the derived time series at time (t-1)

Session 3: Time Series Analysis

Note

- (a) the absence of the error term in equation (2).
- (b) unconstrained estimation often leads to violation of the non-negativity constraints that are needed to ensure positive variance.
- (c) quadratic form (i.e. modelling σ_t^2) prevents modelling of asymmetry in volatility (i.e. volatility tends to be higher after a decrease than after an equal increase and ARCH cannot account for this).

Session 3: Time Series Analysis

ARCH(1)

$$\sigma_t^2 = \alpha + \beta_{1,1} y_{t-1}^2$$

Define, $v_t = y_t^2 - \sigma_t^2 \Rightarrow \sigma_t^2 = y_t^2 - v_t$. The model can also be written:

$$y_t^2 = \alpha + \beta_{1,1} y_{t-1}^2 + v_t,$$

i.e. an AR(1) model for $\{y_t^2\}$ where the errors, $\{v_t\}$, have zero mean, but as $v_t = \sigma_t^2(\epsilon_t^2 - 1)$ the errors are heteroscedastic.

伺 ト く ヨ ト く ヨ ト

Session 3: Time Series Analysis

(p, q)'th order generalized autoregressive conditionally heteroscedastic model GARCH(p, q) $\{Y_t\}$ is GARCH(p, q) if it satisfies equation (1) and

$$\sigma_t^2 = \alpha + \beta_{1,p} y_{t-1}^2 + \ldots + \beta_{p,p} y_{t-p}^2 + \gamma_{1,q} \sigma_{t-1}^2 + \ldots \gamma_{q,q} \sigma_{t-q}^2,$$

where the parameters are chosen to ensure positive variance.

A B > A B >

Stochastic volatility models SV

Stochastic volatility models treat σ_t as an unobserved random variable which is assumed to follow a certain stochastic process. The specification for the derived series $\{Y_t\}$ is:

$$Y_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \exp(h_t),$$

where ε_t is white noise with zero mean and unit variance, and let h_t , for example, be an AR(1) process:

$$h_t = \alpha + \beta_{1,1}h_{t-1} + \eta_t,$$

where $\{\eta_t\}$ is a white noise process with variance σ_{η}^2 . If $|\beta_{1,1}| < 1$, h_t is stationary $\Rightarrow Y_t$ stationary.

Session 3: Time Series Analysis

Notes:

- (a) unlike the GARCH specification, h_t (which defines in turn σ_t) is NOT deterministic.
- (b) the exponential specification ensures positive conditional variance.
- (c) can be further generalized by assuming, for example, h_t follows an ARMA(p, q) model.

Session 3: Time Series Analysis

Harmonic with additive white noise

Here $\{X_t\}$ is expressed as

$$X_t = \cos(2\pi f_0 t + \phi) + \epsilon_t$$

 f_0 is a fixed frequency and $\{\epsilon_t\}$ is zero mean white noise with variance $\sigma_\epsilon^2.$

Case (a) ϕ is constant.

$$E[X_t] = E[\cos(2\pi f_0 t + \phi)] + E[\epsilon_t] = \cos(2\pi f_0 t + \phi).$$

so, mean depends on $t \Rightarrow$ not stationary.

三 うくぐ

Session 3: Time Series Analysis

Case (b): $\phi \sim U[-\pi, \pi]$ and independent of $\{\epsilon_t\}$.

$$E[X_t] = E\left[\cos(2\pi f_0 t + \phi) + \epsilon_t\right] = E\left\{\cos(2\pi f_0 t + \phi)\right\}$$

Now,

$$E\{\cos(2\pi f_0 t + \phi)\} = \int_{-\pi}^{\pi} \cos(2\pi f_0 t + \phi) \frac{1}{2\pi} d\phi$$
$$= \left[\frac{\sin(2\pi f_0 t + \phi)}{2\pi}\right]_{-\pi}^{\pi} = 0.$$

э

Session 3: Time Series Analysis

So $E[X_t] = 0$, and, using the fact that $\{e_t\}$ and ϕ are independent.

$$E[X_t X_{t+\tau}] = E[[\cos(2\pi f_0 t + \phi) + \epsilon_t] [\cos(2\pi f_0 (t+\tau) + \phi) + \epsilon_{t+\tau}]]$$

 $= E\left[\cos(2\pi f_0 t + \phi)\cos(2\pi f_0 t + \phi + 2\pi f_0 \tau)\right] + E\left[\epsilon_t \epsilon_{t+\tau}\right].$

Recall, as $\{\epsilon_t\}$ is white noise we have,

$$E\{\epsilon_t \epsilon_{t+\tau}\} = \begin{cases} \sigma_{\epsilon}^2 & \text{if } \tau = 0, \\ 0 & \text{if } \tau \neq 0, \end{cases}$$

So, for $\tau = 0$,

$$Cov\{X_t, X_t\} = s_0 = E\{\cos^2(2\pi f_0 t + \phi)\} + \sigma_{\epsilon}^2.$$

Session 3: Time Series Analysis

æ

(日) (同) (三) (三)

Now,

$$E\{\cos^2(2\pi f_0 t + \phi)\} = \int_{-\pi}^{\pi} \cos^2(2\pi f_0 t + \phi) \frac{1}{2\pi} d\phi$$
$$= \frac{1}{2} \int_{-\pi}^{\pi} [1 + \cos(4\pi f_0 t + 2\phi)] \frac{1}{2\pi} d\phi = \frac{1}{2}.$$

Session 3: Time Series Analysis

So,
$$s_0 = rac{1}{2} + \sigma_\epsilon^2$$
 , and for $au > 0$,

 $Cov [X_t, X_{t+\tau}] = s_{\tau} = E [\cos(2\pi f_0 t + \phi) \cos(2\pi f_0 t + \phi + 2\pi f_0 \tau)]$

$$= \frac{1}{2}E \left[\cos(4\pi f_0 t + 2\phi + 2\pi f_0 \tau) + \cos(2\pi f_0 \tau)\right]$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} \cos(2\pi f_0 \tau) \frac{1}{2\pi} d\phi$$

$$= \frac{\cos(2\pi f_0 \tau)}{2} \left[\frac{\phi}{2\pi}\right]_{-\pi}^{\pi} = \frac{\cos(2\pi f_0 \tau)}{2}$$

which does not depend on $t \Rightarrow X_t$ is stationary.

Trend removal and seasonal adjustment

There are certain, quite common, situations where the observations exhibit a trend – a tendency to increase or decrease slowly steadily over time – or may fluctuate in a periodic manner due to seasonal effects. The model is modified to

$$X_t = \mu_t + Y_t$$

- $\mu_t = \text{time dependent mean.}$
- $Y_t =$ zero mean stationary process.

Session 3: Time Series Analysis

163/ 171

Trend adjustment for \mathbf{CO}^2 data: $\{X_t\}$ is monthly atmospheric \mathbf{CO}^2 concentrations expressed in parts per million (ppm) derived from in situ air samples collected at Mauna Loa observatory, Hawaii. Monthly data from May 1988 – December 1998, giving N = 128. Model suggested by plot:

 $X_t = \alpha + \beta t + Y_t.$

(a) Estimate α and β by least squares, and work with the residuals

$$\hat{Y}_t = X_t - \hat{\alpha} - \hat{\beta}t.$$

(b) Take first differences:

$$X_{t}^{(1)} = X_{t} - X_{t-1} = \alpha + \beta t + Y_{t} - (\alpha + \beta(t-1) + Y_{t-1}) = \beta + Y_{t} - Y_{t-1}$$

Note: if $\{Y_t\}$ is stationary so is $\{Y_t^{(1)}\}$ In the case of linear trend, if we difference again:

$$\begin{aligned} X_t^{(2)} &= X_t^{(1)} - X_{t-1}^{(1)} = (X_t - X_{t-1}) - (X_{t-1} - X_{t-2}) \\ &= (\beta + Y_t - Y_{t-1}) - (\beta + Y_{t-1} - Y_{t-2}) \\ &= Y_t - 2Y_{t-1} + Y_{t-2}, \quad (\equiv Y_t^{(1)} - Y_{t-1}^{(1)} = Y_t^{(2)}), \end{aligned}$$

so that the effect of $\mu_t (= \alpha + \beta t)$ has been completely removed.

Session 3: Time Series Analysis

If μ_t is a polynomial of degree (d-1) in t, then dth differences of μ_t will be zero (d = 2 for linear trend). Further,

$$X_t^{(d)} = \sum_{k=0}^d \binom{d}{k} (-1)^k X_{t-k} = \sum_{k=0}^d \binom{d}{k} (-1)^k Y_{t-k}.$$

There are other ways of writing this. Define the difference operator

$$\Delta = (1 - B)$$

where $BX_t = X_{t-1}$ is the backward shift operator (sometimes known as the lag operator L – especially in econometrics). Then,

$$X_t^{(d)} = \Delta^d X_t = \Delta^d Y_t.$$

(*) *) *) *)

Session 3: Time Series Analysis

For example, for d = 2:

$$\begin{aligned} X_t^{(2)} &= (1-B)^2 X_t = (1-B)(X_t - X_{t-1}) \\ &= (X_t - X_{t-1}) - (X_{t-1} - X_{t-2}) \\ &= (\beta + Y_t - Y_{t-1}) - (\beta + Y_{t-1} - Y_{t-2}) \\ &= (Y_t - Y_{t-1}) - (Y_{t-1} - Y_{t-2}) \\ &= (1-B)^2 Y_t = \Delta^2 Y_t. \end{aligned}$$

э

This notation can be incorporated into the ARMA set up; if $\{X_t\}$ is ARMA(p, q),

$$X_t = \phi_{1,p} X_{t-1} + \ldots + \phi_{p,p} X_{t-p} + \epsilon_t - \theta_{1,q} \epsilon_{t-1} - \ldots - \theta_{q,q} \epsilon_{t-q},$$

$$X_t - \phi_{1,p} X_{t-1} - \ldots - \phi_{p,p} X_{t-p} = \epsilon_t - \theta_{1,q} \epsilon_{t-1} - \ldots - \theta_{q,q} \epsilon_{t-q}$$

$$(1-\phi_{1,p}B-\ldots-\phi_{p,p}B^p)X_t = (1-\theta_{1,q}B-\ldots-\theta_{q,q}B^q)\epsilon_t$$

- 4 同 6 4 日 6 4 日 6

Session 3: Time Series Analysis

That is,

$$\Phi(B)X_t = \Theta(B)\epsilon_t$$

where

$$\Phi(B) = 1 - \phi_{1,p}B - \phi_{2,p}B^2 - \ldots - \phi_{p,p}B^p$$

$$\Theta(B) = 1 - heta_{1,q}B - heta_{2,q}B^2 - \ldots - heta_{q,q}B^q$$

are known as the associated or characteristic polynomials.

< 🗇 > < 🖃 >

- ∢ ⊒ →

Session 3: Time Series Analysis

Further, we can generalize the class of ARMA models to include differencing to account for certain types of non-stationarity, namely,

• X_t is called **ARIMA**(p, d, q) if

$$\Phi(B)(1-B)^d X_t = \Theta(B)\epsilon_t,$$

$$\Phi(B)\Delta^d X_t = \Theta(B)\epsilon_t.$$

Session 3: Time Series Analysis

$170/\ 171$

Seasonal adjustment

The model is modified to

$$X_t = s_t + Y_t$$

where

- $\{s_t\}$ is the **seasonal** component,
- $\{Y_t\}$ is zero mean **stationary** process.

Presuming that the seasonal component maintains a constant pattern over time with period s, there are again several approaches to removing s_t . A popular approach used by Box & Jenkins is to use the operator $(1 - B^s)$:

$$X_t^{(s)} = (1 - B^s)X_t = X_t - X_{t-s}$$
$$= (s_t + Y_t) - (s_{t-s} + Y_{t-s})$$

$$= Y_t - Y_{t-s}$$

since s_t has period s (and so $s_{t-s} = s_t$).