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Time series analysis is a branch of applied stochastic processes.
We start with an indexed family of random variables

{Xt : t ∈ T}

where t is the index, here taken to be time (but it could be space).
T is called the index set. We have a state space of values of X .

In addition X could be univariate or multivariate. We shall
concentrate on discrete time. Samples are taken at equal intervals.
We wish to use time series analysis to characterize time series and
understand structure.
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State (possible values of X ) Time Notation

Continuous Continuous X (t)

Continuous Discrete Xt

Discrete Continuous

Discrete Discrete
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Exploratory Analysis

We consider lag k scatter plots by plotting xt versus xt+k , but
they are unwieldy. Suppose we make the assumption that a linear
relationship holds approximately between xt+k and xt for all k, i.e.,

xt+k = αk + βkxt + εt+k

where εt+k is an random error term.

The association between two variables {yt} and {zt} is the
Pearson product moment correlation coefficient

ρ̂ =

∑
(yt − ȳ)(zt − z̄)√∑

(yt − ȳ)2
∑

(zt − z̄)2

where ȳ and z̄ are the sample means.
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Hence if yt = xt+k and zt = xt we are led to the lag k sample
autocorrelation for a time series:

ρ̂k =

N−k∑
t=1

(xt+k − x̄)(xt − x̄)

N∑
t=1

(xt − x̄)2

with ρ̂0 = 1.

The sequence {ρ̂k} is called the sample autocorrelation
sequence (sample acfs) for the time series.
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The series x1, . . . , xN can be regarded as a realization of the
corresponding random variables X1, . . . ,XN , ρ̂k is an estimate of a
corresponding population quantity called the lag k theoretical
autocorrelation, defined as

ρk =
E [(Xt − µ)(Xt+k − µ)]

σ2

where
µ = E [Xt ] σ2 = E

[
(Xt − µ)2

]
are the process mean and process variance.

Note that ρk , µ and σ2 do not depend on t
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Denote the process by {Xt}. For fixed t, Xt is a random variable
(r.v.), and hence there is an associated cumulative distribution
function (cdf):

Ft(a) = P(Xt ≤ a).

But we are interested in the relationships between the various r.v.s
that form the process. For example, for any t1 and t2 ∈ T ,

Ft1,t2(a1, a2) = P(Xt1 ≤ a1,Xt2 ≤ a2)

gives the bivariate cdf. More generally for any t1, t2, . . . , tn ∈ T ,

Ft1,t2,...,tn(a1, a2, . . . , an) = P(Xt1 ≤ a1, . . . ,Xtn ≤ an)

We consider the subclass of stationary processes.
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Stationarity

Strong stationarity {Xt} is said to be strongly (strictly,
completely) stationary if, for all n ≥ 1, for any

t1, t2, . . . , tn ∈ T

and for any τ such that

t1 + τ , t2 + τ , . . . , tn + τ ∈ T

are also contained in the index set, the joint cdf of {Xt1 , . . . ,Xtn}
is the same as that of {Xt1+τ , . . . ,Xtn+τ} i.e.,

Ft1,t2,...,tn(a1, a2, . . . , an) = Ft1+τ,t2+τ,...,tn+τ (a1, a2, . . . , an).
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Second-order stationarity {Xt} is said to be second-order
(weakly) stationary if, for all n ≥ 1, for any

t1, t2, . . . , tn ∈ T

and for any τ such that t1 + τ , t2 + τ , . . . , tn + τ ∈ T are also
contained in the index set, all the joint moments of orders 1 and 2
of {Xt1 ,Xt2 , . . . ,Xtn} exist and are finite.

Most importantly, these moments are identical to the
corresponding joint moments of {Xt1+τ ,Xt2+τ , . . . ,Xtn+τ}.
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Hence,

E [Xt ] ≡ µ Var [Xt ] ≡ σ2 (= E
[
X 2

t

]
− µ2),

are constants independent of t. If we let τ = −t1,

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ] = E [X0Xt2−t1 ] ,

and with τ = −t2,

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ] = E [Xt1−t2X0] .
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Hence, E{Xt1Xt2} is a function of the absolute difference |t2 − t1|
only, similarly, for the covariance between Xt1 & Xt2 :

Cov [Xt1 ,Xt2 ] = E [(Xt1 − µ)(Xt2 − µ)] = E [Xt1Xt2 ]− µ2.

The autocovariance sequence (acvs), sτ , is defined by

sτ ≡ Cov [Xt ,Xt+τ ] = Cov [X0,Xτ ] .

τ is called the lag.

s0 = σ2 and s−τ = sτ , with |sτ | ≤ s0 for τ > 0.

The autocorrelation sequence (acfs) is given by

ρτ =
sτ
s0

=
Cov [Xt ,Xt+τ ]

σ2
.
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The sequence {sτ} is positive semidefinite, i.e., for all n ≥ 1, for
any t1, t2, . . . , tn contained in the index set, and for any set of
nonzero real numbers a1, a2, . . . , an

n∑
j=1

n∑
k=1

stj−tk ajak ≥ 0.

Let a = (a1, a2, . . . , an)
T, V = (Xt1 ,Xt2 , . . . ,Xtn)

T, and let
Σ be the variance-covariance matrix of V. Its j , k-th element
is given by

stj−tk = E
[
(Xtj − µ)(Xtk − µ)

]
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Define the r.v.

w =
n∑

j=1

ajXtj = aTV.

Then

0 ≤ Var [w ] = Var
[
aTV

]
= aTVar [V] a = aTΣa

=
n∑

j=1

n∑
k=1

stj−tk ajak .
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The variance-covariance matrix of equispaced X ’s,
(X1,X2, . . . ,XN)T has the form

s0 s1 . . . sN−2 sN−1

s1 s0 . . . sN−3 sN−2
...

. . .

sN−2 sN−3 . . . s0 s1
sN−1 sN−2 . . . s1 s0


which is known as a symmetric Toeplitz matrix – all elements
on a diagonal are the same.

Note the above matrix has only N unique elements,
s0, s1, . . . , sN−1.
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A stochastic process {Xt} is called Gaussian if, for all n ≥ 1
and for any t1, t2, . . . , tn contained in the index set, the joint
cdf of Xt1 ,Xt2 , . . . ,Xtn is multivariate Gaussian.

2nd-order stationary Gaussian ⇒ complete stationarity

follows as the multivariate Normal distribution is completely
characterized by 1st and 2nd moments

not true in general.

Complete stationarity ⇒ 2nd-order stationary in general.
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White noise process
Also known as a purely random process. Let {Xt} be a sequence of
uncorrelated r.v.s such that

E [Xt ] = µ Var [Xt ] = σ2 ∀t

and

sτ =

{
σ2 τ = 0
0 τ 6= 0

or ρτ =

{
1 τ = 0
0 τ 6= 0

forms a basic building block in time series analysis. Very different
realizations of white noise can be obtained for different
distributions of {Xt}.
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q-th order moving average process MA(q)
Xt can be expressed in the form

Xt = µ− θ0,qεt − θ1,qεt−1 − . . .− θq,qεt−q = µ−
q∑

j=0

θj ,qεt−j ,

where µ and θj ,q’s are constants (θ0,q ≡ −1, θq,q 6= 0), and {εt} is
a zero-mean white noise process with variance σ2

ε .
We assume E [Xt ] = µ = 0. Then

Cov [Xt ,Xt+τ ] = E{XtXt+τ}
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Recall: Cov(X ,Y ) = E{(X − E{X})(Y − E{Y })}. Since
E{εtεt+τ} = 0 ∀ τ 6= 0 we have for τ ≥ 0.

Cov [Xt ,Xt+τ ] =

q∑
j=0

q∑
k=0

θj ,qθk,qE{εt−jεt+τ−k}

= σ2
ε

q−τ∑
j=0

θj ,qθj+τ,q (k = j + τ)

≡ sτ ,

which does not depend on t.
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Since sτ = s−τ , {Xt} is a stationary process with acvs given by

sτ =

 σ2
ε

q−|τ |∑
j=0

θj ,qθj+|τ |,q |τ | ≤ q

0 |τ | > q

No restrictions were placed on the θj ,q’s to ensure stationarity.

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 20/ 171

Example: Xt = εt − θ1,1εt−1 MA(1)
acvs:

sτ = σ2
ε

1−|τ |∑
j=0

θj ,1θj+|τ |,1 |τ | ≤ 1,

so,
s0 = σ2

ε (θ0,1θ0,1 + θ1,1θ1,1) = σ2
ε (1 + θ2

1,1);

and,
s1 = σ2

εθ0,1θ1,1 = −σ2
εθ1,1.
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acfs:

ρτ =
sτ
s0

: ρ0 = 1.0 ρ1 =
−θ1,1

1 + θ2
1,1

For θ1,1 = 1.0, σ2
ε = 1.0, we have,

s0 = 2.0, s1 = −1.0, s2, s3, . . . = 0.0,

giving,
ρ0 = 1.0, ρ1 = −0.5, ρ2, ρ3, . . . = 0.0.

For θ1,1 = −1.0, σ2
ε = 1.0, we have,

s0 = 2.0, s1 = 1.0, s2, s3, . . . = 0.0,

giving,
ρ0 = 1.0, ρ1 = 0.5, ρ2, ρ3, . . . = 0.0.
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Note: if we replace θ1,1 by θ−1
1,1 the model becomes

Xt = εt −
1

θ1,1
εt−1

and the autocorrelation becomes

ρ1 =

− 1

θ1,1

1 +

(
1

θ1,1

)2
=
−θ1,1

θ2
1,1 + 1

,

i.e., is unchanged. Thus we cannot identify the MA(1) process
uniquely from the autocorrelation.
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p-th order autoregressive process AR(p )
{Xt} is expressed in the form

Xt = φ1,pXt−1 + φ2,pXt−2 + . . .+ φp,pXt−p + εt ,

where φ1,p, φ2,p, . . . , φp,p are constants (φp,p 6= 0) and {εt} is a
zero mean white noise process with variance σ2

ε .

In contrast to the parameters of an MA(q) process, the {φk,p}
must satisfy certain conditions for {Xt} to be a stationary
process – not all AR(p) processes are stationary.
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Example

Xt = φ1,1Xt−1 + εt

= φ1,1{φ1,1Xt−2 + εt−1}+ εt

= φ2
1,1Xt−2 + φ1,1εt−1 + εt

...

=
∞∑

k=0

φk
1,1εt−k (initial condition X−N = 0; let N →∞

Var [Xt ] = Var

[ ∞∑
k=0

φk
1,1εt−k

]
=

∞∑
k=0

Var{φk
1,1εt−k} = σ2

ε

∞∑
k=0

φ2k
1,1.
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For Var [Xt ] <∞ we must have |φ1,1| < 1, in which case

Var [Xt ] =
σ2

ε

1− φ2
1,1

.

To find the form of the acvs, we notice that for τ > 0, Xt−τ is a
linear function of εt−τ , εt−τ−1, . . . and is therefore uncorrelated
with εt . Hence

E [εtXt−τ ] = 0.
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Assuming stationarity and multiplying the defining equation (1) by
Xt−τ :

XtXt−τ = φ1,1XtXt−τ + εtXt−τ

=⇒ E [XtXt−τ ] = φ1,1E [Xt−1Xt−τ ]

so that

sτ = φ1,1sτ−1 = φ2
1,1sτ−2 = . . . = φτ

1,1s0 ⇒ ρτ =
sτ
s0

= φτ
1,1

However ρτ is an even function of τ , so

ρτ = φ
|τ |
1,1 τ = 0,±1,±2, . . . .

giving exponential decay
David A. Stephens Statistical Inference and Methods
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(p, q)’th order autoregressive-moving average process
ARMA(p, q)

Here {Xt} is expressed as

Xt = φ1,pXt−1 + . . .+ φp,pXt−p + εt − θ1,qεt−1 − . . .− θq,qεt−q,

where the φj ,p’s and the θj ,q’s are all constants
(φp,p 6= 0; θq,q 6= 0) and again {εt} is a zero mean white noise
process with variance σ2

ε .

The ARMA class is important as many data sets may be
approximated in a more parsimonious way (meaning fewer
parameters are needed) by a mixed ARMA model than by a pure
AR or MA process.
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The General Linear Process

Consider a process of the form

Xt =
∞∑

k=−∞
gkεt−k ,

where {εt} is a purely random process, with
∞∑

k=−∞
g2
k <∞.

This condition ensures that {Xt} has finite variance. Now |ρt | ≤ 1,
so, also,

|sτ | = |Cov [Xt ,Xt−τ ]| ≤ σ2
X = σ2

ε

∑
k

g2
k <∞.

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 29/ 171

If g−1, g−2, . . . = 0, then we obtain what is called the General
Linear Process

Xt =
∞∑

k=0

gkεt−k ,

where Xt depends only on past and present values εt , εt−2, εt−2, . . .
of the purely random process. Consider the function

G (z) =
∞∑

k=0

gkzk ,

“z-polynomial” where z = e−iω. Note Xt = G (B)εt .
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Then write

G (z) =
G1(z)

G2(z)

Call the zeros of G2(z) (the “poles” of G (z)) in the complex
plane z1, z2, . . . , zp, where the zeros are ordered so that z1, . . . , zk

are inside and zk+1, . . . , zp are outside the unit circle |z | = 1.

Then, if all the roots of G2(z) are outside the unit circle (i.e. all
the poles of G (z) are outside the unit circle) only past and present
values of {εt} are involved and the General Linear Process exists.
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Another way of stating this is that

G (z) <∞ |z | ≤ 1

i.e., G (z) is analytic inside and on the unit circle. Thus

all the poles of G (z) lie outside the unit circle

all the roots of G−1(z) = 0 lie outside the unit circle

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 32/ 171

Consider the MA(q) model

Xt = Θ(B)εt =⇒ Θ−1(B)Xt = εt

and in general, the expansion of Θ−1(B) is a polynomial of infinite
order. Similarly, consider the AR(p) model

Φ(B)Xt = εt =⇒ Xt = Φ−1(B)εt .

Hence

MA (finite order) ≡ AR (infinite order)
AR (finite order) ≡ MA (infinite order)

provided the infinite order expansions exist
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Invertibility
Consider inverting the general linear process into autoregressive
form

Xt =
∞∑

k=0

gkεt−k =
∞∑

k=0

gkBkεt

= G (B)εt

so that
G−1(B)Xt = εt
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The expansion of G−1(B) in powers of B gives the required
autoregressive form provided G−1(B) admits a power series
expansion

G−1(z) =
∞∑

k=0

hkzk

i.e. if G−1(z) is analytic, |z | ≤ 1. Thus the model is invertible if
all the poles of G−1(z) are outside the unit circle.

G−1(z) <∞, |z | ≤ 1.

For the MA(q) process, G (z) = Θ(z), and so the invertibility
condition is that Θ(z) has no roots inside or on the unit circle; i.e.
all the roots of Θ(z) lie outside the unit circle.
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Stationarity of ARMA processes
For the AR(p) process

Φ(B)Xt = εt

so that
Xt = Φ−1(B)εt = G (B)εt ,

so that G (z) = Φ−1(z). Hence the requirement for stationarity is
that all the roots of G−1(z) = Φ(z) must lie outside the unit circle.

For the MA(q) process

Xt = Θ(B)εt = G (B)εt

and since G (B) = Θ(B) is a polynomial of finite order G (z) <∞,
|z | ≤ 1, automatically.
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Example:

Xt = 1.3Xt−1 − 0.4Xt−2 + εt − 1.5εt−1.

Writing in B notation:

(1− 1.3B + 0.4B2)Xt = (1− 1.5B)εt

we have
Φ(z) = 1− 1.3z + 0.4z2

with roots z = 2 and 5/4, so the roots of Φ(z) = 0 both lie
outside the unit circle, and the model is stationary, and

Θ(z) = 1− 1.5z ,

so the root of Θ(z) = 0 is given by z = 2/3 which lies inside the
unit circle and the model is not invertible.
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Directionality and Reversibility
Consider again the general linear model

Xt =
∞∑

k=0

gkεt−k =
∞∑

k=0

gkBkεt = G (B)εt

The reversed form is clearly,

Xt =
∞∑

k=0

gkεt+k =
∞∑

k=0

gkB−kεt = G

(
1

B

)
εt ,

with some stationarity condition.
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Now consider the ARMA(p, q) model given by

Φ(B)Xt = Θ(B)εt ,

where,

Φ(B) = 1− φ1,pB − φ2,pB
2 − . . .− φp,pB

p

Θ(B) = 1− θ1,qB − θ2,qB
2 − . . .− θq,qB

q
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The reversed form of the ARMA(p, q) model is,

Φ

(
1

B

)
Xt = Θ

(
1

B

)
εt =⇒ ΦR(B)Xt = Bp−qΘRεt

where,

ΦR(B) = Bp − φ1,pB
p−1 − φ2,pB

p−2 − . . .− φp,p

ΘR(B) = Bq − θ1,qB
q−1 − θ2,qB

q−2 − . . .− θq,q
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For example, for the ARMA(1,1) model,

(1− φ1,1)Xt = (1− θ1,1)εt ,

reversed form is

(B − φ1,1)Xt = (B − θ1,1)εt

Now Φ(z) = 1− φ1,1z , and a root is the solution of 1− φ1,1z = 0,
i.e.,

|z | =
∣∣∣∣ 1

φ1,1

∣∣∣∣ > 1⇒ |φ1,1| < 1.
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But, ΦR(z) = z − φ1,1, and so a root is the solution of
z − φ1,1 = 0, i.e., z = φ1,1. But, since for stationarity |φ1,1| < 1
we have

|z | = |φ1,1| < 1,

so the root of ΦR(z) is inside the unit circle.

Hence the standard assumption for stationarity (roots outside the
unit circle) has within it an assumption of directionality. [N.B. only
if the roots of Φ(z) are on the unit circle is model ALWAYS
non-stationary].
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Spectral Representations

Spectral analysis is a study of the frequency domain characteristics
of a process, and describes the contribution of each frequency to
the variance of the process. Let us define a complex “jump”
process {Z (f )} on the interval [0, 1/2], such that

dZ (f ) ≡


Z (f + df )− Z (f ), 0 ≤ f < 1/2;
0, f = 1/2;
dZ ∗(−f ), −1/2 ≤ f < 0,

where df is a small positive increment. If the intervals [f , f + df ]
and [f ′, f ′ + df ′] are non-intersecting subintervals of [−1/2, 1/2],
then the r.v.’s dZ (f ) and dZ (f ′) are uncorrelated.

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 43/ 171

We say that the process has orthogonal increments, and the
process itself is called an orthogonal process – this orthogonality
results is very important.

Let {Xt} be a real-valued discrete time stationary process, with
zero mean, the spectral representation theorem states that
there exists such an orthogonal process {Z (f )}, defined on
(−1/2, 1/2], such that

Xt =

∫ 1/2

−1/2
e i2πft dZ (f )

for all integers t.
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The process {Z (f )} has the following properties:

E{dZ (f )} = 0 ∀ |f | ≤ 1/2.

E{|dZ (f )|2} ≡ dS (I )(f ) say ∀ |f | ≤ 1/2, where dS (I )(f ) is
called the integrated spectrum of {Xt}, and

for any two distinct frequencies f and f ′ ∈ (−1/2, 1/2]

Cov{dZ (f ′), dZ (f )} = E{dZ ∗(f ′)dZ (f )} = 0.
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The spectral representation

Xt =

∫ 1/2

−1/2
e i2πft dZ (f ) =

∫ 1/2

−1/2
e i2πft |dZ (f )|e i arg{dZ(f )},

means that we can represent any discrete stationary process as an
“infinite” sum of complex exponentials at frequencies f with
associated random amplitudes |dZ (f )| and random phases
arg{dZ (f )}.

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 46/ 171

The orthogonal increments property can be used to define the
relationship between the autocovariance sequence {sτ} and the
integrated spectrum S I (f ):

sτ = E [XtXt+τ ] = E [X ∗
t Xt+τ ]

= E

[∫ 1/2

−1/2
e−i2πf ′t dZ ∗(f ′)

∫ 1/2

−1/2
e i2πf (t+τ) dZ (f )

]

=

∫ 1/2

−1/2

∫ 1/2

−1/2
e i2π(f−f ′)te i2πf τE{dZ ∗(f ′)dZ (f )}.
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Because of the orthogonal increments property,

E{dZ ∗(f ′)dZ (f )} = dS (I )(f ) f = f ′

and zero otherwise, so

sτ =

∫ 1/2

−1/2
e i2πf τ dS (I )(f ),

which shows that the integrated spectrum determines the acvs for
a stationary process. If S (I )(f ) is differentiable with derivative S(f )
(the spectral density function (sdf)), we have

E{|dZ (f )|2} = dS (I )(f ) = S(f ) df .

Hence

sτ =

∫ 1/2

−1/2
e i2πftS(f ) df .
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But a square summable deterministic sequence {gt} say has the
Fourier representation

gt =

∫ 1/2

−1/2
G (f )e i2πft df where G (f ) =

∞∑
t=−∞

gte
−i2πft ,

If we assume that S(f ) is square integrable, then S(f ) is the
Fourier transform of {sτ},

S(f ) =
∞∑

τ=−∞
sτe

−i2πf τ .

Hence,
{sτ} ←→ S(f ),

i.e., {sτ} and S(f ) are a FT. pair.
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S(·) has the following interpretation: S(f ) df is the average
contribution (over all realizations) to the power from components
with frequencies in a small interval about f . The power – or
variance – is ∫ 1/2

−1/2
S(f ) df .

Hence, S(f ) is often called the power spectral density function or
just power spectrum.
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Properties :

S (I )(f ) =
∫ f
−1/2 S(f ′) df ′.

0 ≤ S (I )(f ) ≤ σ2 where σ2 = Var [Xt ] ; S(f ) ≥ 0.

S (I )(−1/2) = 0; S (I )(1/2) = σ2;
∫ 1/2
−1/2 S(f ) df = σ2.

f < f ′ ⇒ S (I )(f ) ≤ S (I )(f ′); S(−f ) = S(f ).

Except, basically, for the scaling factor σ2,S (I )(f ) has all the
properties of a probability distribution function, and hence is
sometimes called a spectral distribution function.
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The integrated spectrum, S (I )(f ) can be decomposed as

S (I )(f ) = S
(I )
1 (f ) + S

(I )
2 (f )

where the S
(I )
j (f )’s are nonnegative, nondecreasing functions with

S
(I )
j (−1/2) = 0 and are of the following types:

S
(I )
1 (·) has its derivative S(·) for all f , and

S (I )(f ) =

∫ f

−1/2
S(f ′)df ′.

S
(I )
2 (·) is a step function with jumps of size
{pl} : l = 1, 2, . . .} at the points {fl : l = 1, 2, . . .}.
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(a) If S
(I )
1 (f ) ≥ 0;S

(I )
2 (f ) = 0, {Xt} has a purely continuous

spectrum and S(f ) is absolutely integrable, with∫ 1/2

−1/2
S(f ) cos(2πf τ) df and

∫ 1/2

−1/2
S(f ) sin(2πf τ)→ 0,

as τ →∞. But,

sτ =

∫ 1/2

−1/2
e i2πf τS(f ) df

=

∫ 1/2

−1/2
S(f ) cos(2πf τ) df + i

∫ 1/2

−1/2
S(f ) sin(2πf τ) df

so that sτ → 0 as |τ | → ∞. In other words, the acvs
diminishes to zero (called “mixing condition”).
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(b) If S
(I )
1 (f ) = 0; S

(I )
2 (f ) ≥ 0, the integrated spectrum consists

entirely of a step function, and the {Xt} is said to have a
purely discrete spectrum or a line spectrum .

The acvs for a process with a line spectrum never damps
down to 0.

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 54/ 171

White noise spectrum
Recall that a white noise process {εt} has acvs:

sτ =

{
σ2

ε τ = 0
0 otherwise

Therefore, the spectrum of a white noise process is given by:

Sε(f ) =
∞∑

τ=−∞
sτe

−i2πf τ = s0 = σ2
ε .

i.e., white noise has a constant spectrum.
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The sdf and acvs contain the same amount of information in that
if we know one of them, we can calculate the other. However, they
are often not equally informative.

The sdf usually proves to be the more sensitive and
interpretable diagnostic or exploratory tool.

The sdf is able to distinguish between the processes while the
acvs’s are not noticeably different.

dB = 10 log10(power) scale often used.
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Sampling and Aliasing

So far we have only looked at discrete time series {Xt}. However,
such a process is usually obtained by sampling a continuous time
process at equal intervals ∆t, i.e., for a sampling interval ∆t > 0
and an arbitrary time offset t0, we can define a discrete time
process through

Xt ≡ X (t0 + t∆t), t = 0,±1,±2, . . . .

If {X (t)} is a stationary process with, say, sdf SX (t)(·) and acvf
s(τ), then {Xt} is also a stationary process with, say, sdf SXt (·)
and acvs {sτ}.
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It can be shown that when S
(I )
X (t) is differentiable:

SXt (f ) =
∞∑

k=−∞
SX (t)

(
f +

k

∆t

)
for |f | ≤ 1

2∆t
.

Thus, the discrete time sdf at f is the sum of the continuous time
sdf at frequencies f ± k

∆t , k = 0, 1, 2, . . ..

The frequency 1/(2∆t) is called the Nyquist frequency ; previously
we have taken ∆t = 1, so that the frequency range was |f | ≤ 1

2 .
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If SX (t) is essentially zero for |f | > 1/(2∆t) we can expect good
correspondence between SXt (f ) and SX (t)(f ) for |f | ≤ 1/(2∆t)
(since

SX (t)(f ± k/(2∆t)) ≈ 0

for k = 1, 2, . . .).

If SX (t) is large for some |f | > 1/(2∆t), the correspondence can
be quite poor, and an estimate of SXt will not tell us much about
SX (t).
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Estimation and Forecasting

Ergodic Property Methods we shall look at for estimating
quantities such as the autocovariance function will use
observations from a single realization.

Such methods are based on the strategy of replacing ensemble
averages by their corresponding time averages.
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Sample mean:
Given a time series X1,X2, . . . ,XN , let

X̄ =
1

N

∑
Xt .

(
assume

∞∑
τ=−∞

|sτ | <∞

)
.

Then,

E{X̄} =
1

N

n∑
t=1

E [Xt ] =
1

N
.Nµ = µ

so X̄ is an unbiased estimator of µ. Hence, X̄ converges to µ in
mean square if

lim
N→∞

Var{X̄} = 0.
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Var{X̄} = E{(X̄ − µ)2} = E


(

1

N

N∑
i=1

(Xi − µ)

)2


=
1

N2

N∑
t=1

N∑
u=1

E{(Xt − µ)(Xu − µ)} =
1

N2

N∑
t=1

N∑
u=1

su−t

=
1

N2

N−1∑
τ=−(N−1)

N−|τ |∑
k=1

sτ

=
1

N2

N−1∑
τ=−(N−1)

(N − |τ |)sτ =
1

N

N−1∑
τ=−(N−1)

(
1− |τ |

N

)
sτ
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If
N−1∑

τ=−(N−1)

sτ

converges to a limit as N →∞, then

it must since

∣∣∣∣∣∣
N−1∑

τ=−(N−1)

sτ

∣∣∣∣∣∣ ≤
N−1∑

τ=−(N−1)

|sτ | <∞ ∀N,

then
∑N−1

τ=−(N−1)

(
1− |τ |

N

)
sτ converges to the same limit.
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We can thus conclude that,

lim
N→∞

NVar{X̄} = lim
N→∞

N−1∑
τ=−(N−1)

(
1− |τ |

N

)
sτ

= lim
N→∞

N−1∑
τ=−(N−1)

sτ =
∞∑

τ=−∞
sτ .
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The assumption of absolute summability of {sτ} implies that {Xt}
has a purely continuous spectrum with sdf

S(f ) =
∞∑

τ=−∞
sτe

−i2πf τ , so that S(0) =
∞∑

τ=−∞
sτ .

Thus

lim
N→∞

NVar{X̄} = S(0) ∴ Var{X̄} ≈ S(0)

N
for large N.

and therefore, Var{X̄} → 0. Note that the convergence of X̄
depends only on the spectrum at S(0) , i.e. at f = 0.
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Autocovariance Sequence: Now,

sτ = E{(Xt − µ)(Xt+τ − µ)}

so that a natural estimator for the acvs is

ŝ(u)
τ =

1

N − |τ |

N−|τ |∑
t=1

(Xt−X̄ )(Xt+|τ |−X̄ ) τ = 0,±1, . . . ,±(N−1).

Note ŝ
(u)
−τ = ŝ

(u)
τ as it should.
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If we replace X̄ by µ:

E{ŝ(u)
τ } =

1

N − |τ |

N−|τ |∑
t=1

E{(Xt − µ)(Xt+|τ | − µ)}

=
1

N − |τ |

N−|τ |∑
t=1

sτ = sτ , τ = 0,±1, . . . ,±(N − 1).

Thus, ŝ
(u)
τ is an unbiased estimator of sτ when µ is known. (Hence

the (u) – for unbiased). Most texts refer to ŝ
(u)
τ as unbiased –

however, if µ is estimated by X̄ , ŝ
(u)
τ is typically a biased estimator

of sτ .
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A second estimator of sτ is typically preferred:

ŝ(p)
τ =

1

N

N−|τ |∑
t=1

(Xt − X̄ )(Xt+|τ | − X̄ ) τ = 0,±1, . . . ,±(N − 1).

With X̄ replaced by µ:

E{ŝ(p)
τ } =

1

N

N−|τ |∑
t=1

sτ =

(
1− |τ |

N

)
sτ ,

so that ŝ
(p)
τ is a biased estimator, and the magnitude of its bias

increases as |τ | increases. Most texts refer to ŝ
(p)
τ as biased.
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Why should we prefer the “biased” estimator ŝ
(p)
τ to the

“unbiased” estimator ŝ
(u)
τ ?

1 For many stationary processes of practical interest

mse{ŝ(p)
τ } < mse{ŝ(u)

τ },

where

mse{ŝτ} = E{(ŝτ − sτ )
2}

= E{ŝ2
τ } − 2sτE{ŝτ}+ s2

τ

= (E{ŝ2
τ } − E 2{ŝτ}) + E 2{ŝτ} − 2sτE{ŝτ}+ s2

τ

= Var{ŝτ}+ (sτ − E{ŝτ})2

= variance + (bias)2
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2 If {Xt} has a purely continuous spectrum we know that
sτ → 0 as |τ | → ∞. It therefore makes sense to choose an
estimator that decreases nicely as |τ | → N − 1 (i.e. choose

ŝ
(p)
τ ).

3 We know that the acvs must be positive semidefinite, the

sequence {ŝ(p)
τ } has this property, whereas the sequence

{ŝ(u)
τ } may not.
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The Periodogram

Suppose

S(f ) =
∞∑

τ=−∞
sτe

−i2πf τ |f | ≤ 1

2
,

is purely continuous. We can use the (biased) estimator of sτ :

ŝ(p)
τ =

1

N

N−|τ |∑
t=1

XtXt+|τ |

for |τ | ≤ N − 1, but not for |τ | ≥ N. Hence we could replace sτ by

ŝ
(p)
τ for |τ | ≤ N − 1 and assume sτ = 0 for |τ | ≥ N.
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Hence,

Ŝ (p)(f ) =

(N−1)∑
τ=−(N−1)

ŝ(p)
τ e−i2πf τ

=
1

N

(N−1)∑
τ=−(N−1)

N−|τ |∑
t=1

XtXt+|τ |e
−i2πf τ

=
1

N

N∑
j=1

N∑
k=1

XjXke−i2πf (k−j) =
1

N

∣∣∣∣∣
N∑

t=1

Xte
−i2πft

∣∣∣∣∣
2

,

Ŝ (p)(f ) defined above is known as the periodogram, and is defined
over [−1/2, 1/2].
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Note that {s(p)
τ } and Ŝ (p)(f ),

{s(p)
τ } ←→ Ŝ (p)(f )

just like the process quantities

{sτ} ←→ S(f ).

Hence, {s(p)
τ } can be written as

s(p)
τ =

∫ 1/2

−1/2
Ŝ (p)(f )e i2πf τ df |τ | ≤ N − 1.
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If Ŝ (p)(f ) were an ideal estimator of S(f ) we would have

i E{Ŝ (p)(f )} ≈ S(f ) ∀f .
ii Var{Ŝ (p)(f )} → 0 as N →∞ and,

iii Cov{Ŝ (p)(f ), Ŝ (p)(f ′)} ≈ 0 for f 6= f ′.

We find that

i is a good approximation for some processes,

ii is patently false,

iii holds if f and f ′ are certain distinct frequencies, namely, the
Fourier frequencies fk = k/N (∆t = 1).
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We firstly look at the expectation in i. (assuming µ = 0).

E{Ŝ (p)(f )} =

(N−1)∑
τ=−(N−1)

E{s(p)
τ }e−i2πf τ

=

(N−1)∑
τ=−(N−1)

(
1− |τ |

N

)
sτe

−i2πf τ .

Hence, if we know the acvs {sτ} we can work out from this what
E{Ŝ (p)(f )} will be.
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We can obtain much more insight by considering:

E{|J(f )|2} where J(f ) =
1√
N

N∑
t=1

Xte
−i2πft , |f | ≤ 1

2
.

as Ŝ (p)(f ) = |J(f )|2.
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We know from the spectral representation theorem that,

Xt =

∫ 1/2

−1/2
e i2πf ′t dZ (f ′),

so that,

J(f ) =
N∑

t=1

(∫ 1/2

−1/2

1√
N

e i2πf ′t dZ (f ′)

)
e−i2πft

=

∫ 1/2

−1/2

N∑
t=1

1√
N

e−i2π(f−f ′)t dZ (f ′)
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We find that,

E{Ŝ (p)(f )} = E{|J(f )|2} = E{J∗(f )J(f )}

=

∫ 1/2

−1/2
F(f − f ′)S(f ′) df ′,

where F is Féjer’s kernel defined by

F(f ) =

∣∣∣∣∣
N∑

t=1

1√
N

e−i2πft

∣∣∣∣∣
2

=
sin2(Nπf )

N sin2(πf )
.

This result tells us that the expected value of Ŝ (p)(f ) is the true
spectrum convolved with Féjer’s kernel.
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Properties of Féjer’s kernel:

(a) For all integers N ≥ 1,F(f )→ N as f → 0.

(b) For N ≥ 1, f ∈ [−1/2, 1/2] and f 6= 0, F(f ) < F(0).

(c) For f ∈ [−1/2, 1/2], f 6= 0, F(f )→ 0 as N →∞.

(d) For any integer k 6= 0 such that
fk = k/N ∈ [−1/2, 1/2], F(fk) = 0.

(e)
∫ 1/2
−1/2F(f ) df = 1.

F(f ) is symmetric about the origin and consists of a broad central
peak (“lobe”) and N − 2 sidelobes which decrease as f increases.
From (a), (c) and (e) it follows that as N →∞, F(f ) acts as a
Dirac δ function, with an infinite spike at f = 0.
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For a process with large dynamic range, defined as

10 log10

(
maxf S(f )

minf S(f )

)
as the expected value of the periodogram is a convolution of
Féjer’s kernel and the true spectrum, power from parts of the
spectrum where S(f ) is large can “leak” via the sidelobes to other
frequencies where S(f ) is small.
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Bias reduction – Tapering
To reduce the bias in the periodogram we can use a technique
called tapering.

Let X1,X2, . . . ,XN be a portion of length N of a zero mean
stationary process with sdf S(f ). We form the product {htXt}
where {ht} is a sequence of real-valued constants called a data
taper . Define

J(f ) =
N∑

t=1

htXte
−i2πft |f | ≤ 1/2.
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By the spectral representation theorem,

Xt =

∫ 1/2

−1/2
e i2πf ′t dZ (f ′),

so that,

J(f ) =
N∑

t=1

ht

(∫ 1/2

−1/2
e i2πf ′t dZ (f ′)

)
e−i2πft

=

∫ 1/2

−1/2

N∑
t=1

hte
−i2π(f−f ′)t dZ (f ′) =

∫ 1/2

−1/2
H(f − f ′) dZ (f ′),

where,

H(f ) =
N∑

t=1

hte
−i2πft i.e., {ht} ←→ H(f ).
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Let,

Ŝ (d)(f ) = |J(f )|2 =

∣∣∣∣∣
N∑

t=1

htXte
−i2πft

∣∣∣∣∣
2

.

Then,

|J(f )|2 = J∗(f )J(f )

=

∫ 1/2

−1/2
H∗(f − f ′) dZ ∗(f ′)

∫ 1/2

−1/2
H(f − f ′′) dZ (f ′′).
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Hence

E{Ŝ (d)(f )} = E{|J(f )|2} =

∫ 1/2

−1/2
|H(f − f ′)|2S(f ′) df ′

=

∫ 1/2

−1/2
H(f − f ′)S(f ′) df ′,

where H(f − f ′) = |H(f − f ′)|2, i.e.,

H(f ) =

∣∣∣∣∣
N∑

t=1

hte
−i2πft

∣∣∣∣∣
2

.
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We take,
N∑

t=1

h2
t = 1.

A spectral estimator of the form of Ŝ (d)(f ) is called a direct
spectral estimator (hence the (d)).

Note, if ht = 1√
N

for 1 ≤ t ≤ N, then

Ŝ (d)(f ) = Ŝ (p)(f ) and H(f ) = F(f ),

i.e., Ŝ (d)(f ) is the same as the periodogram, and H(f ) is the same
as Féjer’s kernel.
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The key idea behind tapering is to select {ht} so that H(f ) has
much lower sidelobes that F(f ). Recall that F(f ) corresponds to a
rectangular taper

ht =

{
1√
N

for 1 ≤ t ≤ N,

0 otherwise.

There is thus a sharp discontinuity between where the taper is
“ON” (1 ≤ t ≤ N) and where it is “OFF”. Tapering effectively
creates a smooth transition at the ends of the data.
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Parametric model fitting

We focus on AR(p) models, for which the sdf is

S(f ) =
σ2

|1− φ1,pe
−i2πf − . . .− φp,pe

−i2πfp|2
.

This class of models is appealing for several reasons.

(i) Any time series with a purely continuous sdf can be
approximated well by an AR(p) model if p is large enough.

(ii) There exist efficient algorithms for fitting AR(p) models to
time series.

(iii) Quite a few physical phenomena are reverberant and hence an
AR model is naturally appropriate.
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The Yule-Walker Method
We start by multiplying the defining equation by Xt−k :

XtXt−k =

p∑
j=1

φj ,pXt−jXt−k + εtXt−k .

Taking expectations, for k > 0:

sk =

p∑
j=1

φj ,psk−j .
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Let k = 1, 2, . . . , p and recall that s−τ = sτ to obtain

s1 = φ1,ps0 + φ2,ps1 + . . .+ φp,psp−1

s2 = φ1,ps1 + φ2,ps0 + . . .+ φp,psp−2

...
...

sp = φ1,psp−1 + φ2,psp−2 + . . .+ φp,ps0

or in matrix notation, γp = Γpφp, where γp = [s1, s2, . . . , sp]
T ,

φp = [φ1,p, φ2,p, . . . , φp,p]
T and

Γp =


s0 s1 . . . sp−1

s1 s0 . . . sp−2
...

...
...

sp−1 sp−2 . . . s0
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Suppose we don’t know the {sτ}, but the mean is zero, then take

ŝτ =
1

N

N−|τ |∑
t=1

XtXt+|τ |,

and substitute these for the sτ ’s in γ and Γp to obtain γ̂p, Γ̂p ,

from which we estimate φp as φ̂p:

φ̂p = Γ−1γ̂p.
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Finally, we need to estimate σ2
ε . To do so, we multiply the defining

equation by Xt and take expectations to obtain

s0 =

p∑
j=1

φj ,psj + E{εtXt} =

p∑
j=1

φj ,psj + σ2
ε ,

so that as an estimator for σ2
ε we take

σ̂2
ε = ŝo −

p∑
j=1

φ̂j ,p ŝj .

The estimators φ̂p and σ̂2
ε are called the Yule-Walker estimators of

the AR(p) process.
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The estimate of the sdf resulting is

Ŝ(f ) =
σ̂2

ε∣∣∣1−∑p
j=1 φ̂j ,pe

−i2πfj
∣∣∣2 .

There are important modifications which we can make to this
approach: we could use for {ŝτ} a modified autocovariance
incorporating tapering:

ŝτ =

N−|τ |∑
t=1

htXtht+|τ |Xt+|τ |.
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Levinson-Durbin
To invert Γ̂p by brute force matrix inversion requires O(p3)
operations.

Fortunately, there is an algorithm due to Levinson and Durbin
which takes advantage of the highly structured nature of the
Toeplitz matrix, and carries out the estimation in O(p2) or fewer
operations.
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Least squares estimation of the {φj,p}
Let {Xt} be a zero-mean AR(p) process, i.e.,

Xt = φ1,pXt−1 + φ2,pXt−2 + . . .+ φp,pXt−p + εt .

We can formulate an appropriate least squares model in terms of
data X1,X2, . . . ,XN as follows:

XF = Fφ + εF ,

where,

F =


Xp Xp−1 . . . X1

Xp+1 Xp . . . X2
...

...
XN−1 XN−2 . . . XN−p
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and,

XF =


Xp+1

Xp+2
...

XN

 ; φ =


φ1,p

φ2,p
...

φp,p

 ; εF =


εp+1

εp+2
...
εN

 .
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We can thus estimate φ by finding that φ such that

SSF (φ) =
N∑

t=p+1

(
Xt −

p∑
k=1

φk,pXt−k

)2
=

N∑
t=p+1

ε2t


= (XF − Fφ)T (XF − Fφ)

is minimized. If we denote the vector that minimizes the above as
φ̂F , standard least squares theory tells us that it is given by

φ̂F = (FTF )−1FTXF .

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 96/ 171

We can estimate the innovations variance σ2
F by the usual

estimator of the residual variation, namely

σ̂2
F =

(XF − F φ̂F )T (XF − F φ̂F )

(N − 2p)
.

(Note: there are N − p effective observations, and p parameters
are estimated).

The estimator φ̂F is known as the forward least squares estimator
of φ.
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Using a time reversed formulation;

XB = Bφ + εB ,

where,

B =


X2 X3 . . . Xp+1

X3 X4 . . . Xp+2
...

...
XN−p+1 XN−p+2 . . . XN


and,

XB =


X1

X2
...

XN−p

 and εB =


ε1
ε2
...

εN−p

 .
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The function of φ to be minimized is now

SSB(φ) =

N−p∑
t=1

(
Xt −

p∑
k=1

φk,pXt+k

)2

= (XB − Bφ)T (XB − Bφ)

The backward least squares estimator of φ is then given by

φ̂B = (BTB)−1BTXB .
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The corresponding estimator of the innovations variance σ2
B is

σ̂2
B =

(XB − Bφ)T (XB − Bφ)

(N − 2p)
.

The vector φ̂FB that minimizes

SSF (φ) + SSB(φ)

is called the forward/backward least squares estimator, and
Monte-Carlo studies indicate that it performs better than forward
or backward least squares.
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Notes:

φ̂FB , φ̂B and φ̂F produce estimated models which need not
be stationary. This may be a concern for prediction, however,
for spectral estimation, the parameter values will still produce
a valid sdf (i.e., nonnegative everywhere, symmetric about the
origin and integrates to a finite number).

The Yule-Walker estimates can be formulated as a least
squares problem; consider adding zeros to our observations
X1,X2, . . . ,XN , both at the beginning and end of the data, to
give:

XYW = Wφ + εYW ,
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W =



0 0 0 . . . . . . 0
X1 0 0 . . . . . . 0
X2 X1 0 . . . . . . 0
...

...
...

Xp−1
... 0

Xp Xp−1 . . . . . . . . . X1
...

...
...

XN XN−1 . . . . . . . . . XN−p+1

0 XN XN−p+2
...

...
...

0 0 XN
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Therefore

XYW =



X1

X2
...

XN

0
...
0


and εYW =



ε1
ε2
...
εN
0
...
0
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1

N
W TW =


ŝ
(p)
0 ŝ

(p)
1 . . . ŝ

(p)
p−1

ŝ
(p)
1

. . .
...

. . .
. . .

ŝ
(p)
p−1 . . . . . . ŝ

(p)
0

 = Γ̂p
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and

1

N
W TXYW =

 ŝ
(p)
1
...

ŝ
(p)
p

 = γ̂p,

so that
(W TW )−1W TXYW = (Γ̂p)

−1γ̂p.

which is identical to the Yule-Walker estimate.
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Forecasting

Suppose we wish to predict the value of Xt+l of a process, given
Xt ,Xt−1,Xt−2, . . .. Let the appropriate model for {Xt} be an
ARMA(p, q) process:

Φ(B)Xt = Θ(B)εt .

Consider a forecast Xt(l) of Xt+1 (an l-step ahead forecast) which
is a linear combination of Xt ,Xt−1,Xt−2, . . .:

Xt(l) =
∞∑

k=0

πkXt−k .
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Note: this assumes a semi-infinite realization of {Xt}. Let us now
assume that {Xt} can be written as a one-sided linear process, so
that

Xt =
∞∑

k=0

ψkεt−k = Ψ(B)εt ,

and

Xt+l =
∞∑

k=0

ψkεt+l−k = Ψ(B)εt+l .

Hence,

Xt(l) =
∞∑

k=0

πkXt−k =
∞∑

k=0

πkΨ(B)εt−k = Π(B)Ψ(B)εt .
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Let δ(B) = Π(B)Ψ(B) so that,

Xt(l) = δ(B)εt =
∞∑

k=0

δkεt−k .

Now,

Xt+l =
∞∑

k=0

ψkεt+l−k =
l−1∑
k=0

ψkεt+l−k +
∞∑

k=l

ψkεt+l−k = (A) + (B)

(A) Involves future εts, represents the “unpredictable” part of
Xt+l .

(B) Depends only on past and present values of εt , represents the
“predictable” part of Xt+l .
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Hence we would expect

Xt(l) =
∞∑

k=l

ψkεt+l−k =
∞∑
j=0

ψj+lεt−j .

so that δk ≡ ψk+l . This can be readily proved. For linear least
squares, we want to minimize,

E{(Xt+l − Xt(l))
2} = E


(

l−1∑
k=0

ψkεt+l−k +
∞∑

k=0

[ψk+l − δk ]εt−k

)2


= σ2
ε

{(
l−1∑
k=0

ψ2
k

)
+

∞∑
k=0

(ψk+l − δk)2

}
.
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The first term is independent of the choice of the {δk} and the
second term is clearly minimized by choosing
δk = ψk+l , k = 0, 1, 2, . . . as expected. With this choice of {δk}
the second term vanishes, and we have,

σ2(l) = E{(Xt+l − Xt(l))
2}

= σ2
ε

l−1∑
k=0

ψ2
k ,

which is known as the l-step prediction variance.
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When l = 1, δk = ψk+1,

Xt(1) = δ0εt + δ1εt−1 + δ2εt−2 + . . .

= ψ1εt + ψ2εt−1 + ψ3εt−2 + . . .

Xt+1 = ψ0εt+1 + ψ1εt + ψ2εt−1 + . . .

so that,

Xt+1 − Xt(1) = ψ0εt+1 = εt+1 since ψ0 = 1.
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Hence εt+1 can be thought of as the “one step prediction error”.
Also of course,

Xt+1 = Xt(1) + εt+1

so that εt+1 is the essentially “new” part of Xt+1 which is not
linearly dependent on past observations. The sequence {εt} is
often called the innovations process of {Xt}, and σ2

ε is often called
the innovations variance.
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If we wish to write Xt(l) explicitly as a function of Xt ,Xt−1, . . .
then we note first that,

Xt(l) =
∞∑

k=0

δkεt−k =
∞∑

k=0

ψk+lεt−k ,

so that,
Xt(l) = Ψ(l)(B)εt , say

where,

Ψ(l)(z) =
∞∑

k=0

ψk+lz
k .
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Assuming that Ψ(z) is analytic in and on the unit circle (stationary
and invertible) then we can write

Xt = Ψ(B)εt and εt = Ψ−1(B)Xt ,

and thus

Xt(l) = Ψ(l)(B)εt = Ψ(l)(B)Ψ−1(B)Xt

= G (l)(B)Xt , say

with,
G (l)(z) = Ψ(l)(z)Ψ−1(z).
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If we consider the sequence of predictors Xt(l) for different values
of t (with l fixed) then this forms a new process, which since

Xt(l) = G (l)(B)Xt ,

may be regarded as the output of a linear filter acting on the {Xt}.
Since,

Xt(l) =

(∑
u

g
(l)
u Bu

)
Xt =

∑
u

g
(l)
u Xt−u,

we know that the transfer function is

G (l)(f ) =
∑
u

g
(l)
u e−i2πfu.
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Example: AR(1)

Xt − φ1,1Xt−1 = εt |φ1,1| < 1.

Then
Xt = (1− φ1,1B)−1εt .

So,

Ψ(z) = 1 + φ1,1z + φ2
1,1z

2 + . . .

= ψ0 + ψ1z + ψ2z
2 + . . .

i.e., ψk = φk
1,1.
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Hence,

Xt(l) =
∞∑

k=0

δkεt−k =
∞∑

k=0

ψk+lεt−k

=
∞∑

k=0

φk+l
1,1 εt−k = φl

1,1

∞∑
k=0

φk
1,1εt−k

= φl
1,1Xt .

The l-step prediction variance is

σ2(l) = σ2
ε

(
l−1∑
k=0

ψ2
k

)
= σ2

ε

(
l−1∑
k=0

φ2k
1,1

)
= σ2

ε

(1− φ2l
1,1)

(1− φ2
1,1)

.

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 117/ 171

Alternatively,
Xt(l) = G (l)(B)Xt ,

with G (l)(z) = Ψ(l)(z)Ψ−1(z). But,

Ψ(l)(z) =
∞∑

k=0

ψk+lz
k =

∞∑
k=0

φk+l
1,1 zk ,

and,
Ψ−1(z) = 1− φ1,1z ,

so that

G (l)(z) = (φl
1,1 + φl+1

1,1 z + φl+2
1,1 z2 + . . .)(1− φ1,1z) = φl

1,1,

i.e., Xt(l) = φl
1,1Xt as before.
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We have demonstrated that for the AR(1) model the linear least
squares predictor of Xt+l depends only on the most recent
observation, Xt , and does not involve Xt−1,Xt−2, . . ., which is
what we would expect bearing in mind the Markov nature of the
AR(1) model. As l →∞, Xt(l)→ 0, since Xt(l) = φl

1,1Xt and
|φ1,1| < 1. Also, the l-step prediction variance,

σ2(l)→ σ2
ε

(1− φ2
1,1)

= Var [Xt ] .
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In fact the solution to the forecasting problem for the AR(1) model
can be derived directly from the difference equation,

Xt − φ1,1Xt−1 = εt .

by setting future innovations εt to be zero:

Xt(1) = φ1,1Xt + 0

Xt(2) = φ1,1Xt(1) + 0

...

Xt(l) = φ1,1Xt(l − 1) + 0

so that,
Xt(l) = φl

1,1Xt .
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For general AR(p) processes it turns out that Xt(l) depends only
on the last p observed values of {Xt}, and may be obtained by
solving the AR(p) difference equation with the future {εt} set to
zero. For example for an AR(p) process and l = 1,

Xt(1) = φ1,pXt + . . .+ φp,pXt−p+1.
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Example: ARMA(1,1)

(1− φ1,1B)Xt = (1− θ1,1B)εt .

Take φ1,1 = φ and θ1,1 = θ,

Xt =
(1− θB)

(1− φB)
εt = Ψ(B)εt .

So,

Ψ(z) = (1− θz)(1 + φz + φ2z2 + φ3z3 + . . .)

= 1 + (φ− θ)z + φ(φ− θ)z2 + . . .+ φl−1(φ− θ)z l + . . .

= ψ0 + ψ1z + ψ2z
2 + . . .
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So,

ψl =

{
1 l = 0

φl−1(φ− θ) l ≥ 1

The l-step prediction variance is

σ2(l) = σ2
ε

(
l−1∑
k=0

ψ2
k

)
= σ2

ε

(
1 +

l−1∑
k=1

ψ2
k

)

= σ2
ε

(
1 + (φ− θ)2

l−1∑
k=1

φ2k−2

)

= σ2
ε

(
1 + (φ− θ)2 (1− φ2l−2)

(1− φ2)

)
.
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Now,

Ψ(l)(z) =
∞∑

k=0

ψk+lz
k = φl−1(φ− θ)

∞∑
k=0

φkzk = φl−1(φ− θ)(1− φz)−1

Ψ−1(z) =
(1− φz)

(1− θz)
,

so therefore

G (l)(z) = Ψ(l)(z)Ψ−1(z) = φl−1(φ− θ)(1− θz)−1

Xt(l) = G (l)(B)Xt = φl−1(φ− θ)(1− θB)−1Xt .

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 124/ 171

Consider l = 1,

Xt(1) = (φ− θ)(1− θB)−1Xt

= (φ− θ)(1 + θB + θ2B2 + θ3B3 + . . .)Xt

...

= (φ− θ)Xt + θ(φ− θ)Xt−1 + θ2(φ− θ)Xt−2 + . . .

= φXt − θ
[
Xt − (φ− θ)Xt−1 − . . .− θk−1(φ− θ)Xt−k − . . .

]
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But consider,

εt = Ψ−1(B)Xt = (1− φB)(1− θB)−1Xt

= (1− φB)(1 + θB + θ2B2 + θ3B3 + . . .)Xt

...

= Xt − (φ− θ)Xt−1 − . . .− θk−1(φ− θ)Xt−k − . . . .

Therefore,
Xt(1) = φXt − θεt .

So can again be derived directly from the difference equation,

Xt = φXt−1 − θεt−1 + εt ,

by setting future innovations εt to zero.
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MA(1) (invertible)

Xt = εt − θ1,1εt−1 |θ1,1| < 1.

So,

Ψ(z) = ψ0 + ψ1z + ψ2z
2 + . . .

= 1− θ1,1z

Hence, ψ0 = 1; ψ1 = −θ1,1; ψk = 0, k ≥ 2.

Xt(l) =
∞∑

k=0

ψk+lεt−k = Ψ(l)(B)εt

= ψlεt + ψl+1εt−1 + . . .
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So,

Ψ(l)(z) =
∞∑

k=0

ψk+lz
k = ψlz

0 + ψl+1z
1

=

{
−θ1,1 l = 1

0 l ≥ 2.

Hence,

G (l)(z) = Ψ(l)(z)Ψ−1(z) =

{
−θ1,1(1− θ1,1z)−1 l = 1

0 l ≥ 2.
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Thus, for l = 1,

G (1)(z) = −θ1,1(1 + θ1,1z + θ2
1,1z

2 + . . .),

and hence,

Xt(1) = G (1)(B)Xt = −
∞∑

k=0

θk+1
1,1 Xt−k
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Forecast errors and updating
We have seen that when δk = ψk+l the forecast error is

l−1∑
k=0

ψkεt+l−k .

Let,

et(l) = Xt+l − Xt(l) =
l−1∑
k=0

ψkεt+l−k .

Then,

et(l + m) =
l+m−1∑

j=0

ψjεt+l+m−j .
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Clearly,
E{et(l)} = E{et(l + m)} = 0.

Hence,

Cov{et(l), et(l + m)} = E{et(l)et(l + m)} = σ2
ε

l−1∑
k=0

ψkψk+m.

and

Var{et(l)} = σ2
ε

l−1∑
k=0

ψ2
k = σ2(l).
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E.g.,
Cov{et(1), et(2)} = σ2

εψ1.

This could be quite large – should the forecast for a series wander
of target, it is possible for it to remain there in the short run since
forecast errors can be quite highly correlated. Hence, when Xt+1

becomes available we should update the forecast.

Xt+1(l) =
∞∑

k=0

ψk+lεt+1−k

= ψlεt+1 + ψl+1εt + ψl+2εt−1 + . . . ,
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Xt(l + 1) =
∞∑

k=0

ψk+l+1εt−k

= ψl+1εt + ψl+2εt−1 + ψl+3εt−2 + . . . ,

and,

Xt+1(l) = Xt(l + 1) + ψlεt+1

= Xt(l + 1) + ψl(Xt+1 − Xt(1)).

Hence, to forecast Xt+l+1 we can modify the l + 1- step ahead
forecast at time t by producing an l-step ahead forecast at time
t + 1 using Xt+1 as it becomes available.
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Non-stationarity and Unit Roots

Many financial/econometric series are trending.

Two cases commonly considered;

1 Stationary process with deterministic trend (shocks have
temporary effects)

2 Process with stochastic trend or unit root (shocks have
permanent effects)

The distinction between the two cases is practically important for
forecasting and statistical issues.
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Trend Stationarity

Example: Consider an AR(1) model with deterministic linear trend

Yt = φYt−1 + δ + γt + εt t = 1, . . . ,N,

with |φ| < 1. Then, as N −→∞,

E [Yt ] −→ µ+ µ1t Var [Yt ] −→
σ2

1− φ2

using the MA representation.
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Yt is not stationary, but the deviation from the mean

Xt = Yt − µ− µ1t

is stationary; Yt is termed trend-stationary.

The stochastic part is stationary, and shocks have transitory
effects.

Yt is mean-reverting, with attractor µ+ µ1t.

We can analyze Xt as a stationary process.
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Unit Root Processes

Example: Consider an AR(1) model with a unit root φ = 1

Yt = Yt−1 + δ + εt

or
BYt = δ + εt .

z = 1 is a root of the AR polynomial Φ(z) = 1− z .

Yt is non-stationary.

BYt is stationary, Yt termed a difference stationary process.

Yt is termed an integrated first order process, or an I (1)
process.

A process of integrated order d is denoted I (d).
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Note that

Yt = Y0 +
t∑

i=1

BYt = Y0 + δt +
t∑

i=1

εt

with moments

E [Yt ] = Y0 + δt V [Yt ] = tσ2

Y0 remains in the process.

εt accumulates as a random walk, termed a stochastic trend.
These shocks have a permanent effect.

δ forms a deterministic linear trend.

This model is termed a random walk with drift.

Variance grows with t.

Not mean-reverting.
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Unit Root Tests
We consider null and alternative hypotheses to distinguish between
stationarity and non-stationarity.

(1) Dickey-Fuller Test

H0 is a unit root, H1 is stationarity

(2) KPSS Test

H0 is stationarity, H1 is a unit root

Note: In practice, distinguishing φ = 0.99 from φ = 1 is often
difficult ...
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Dickey-Fuller Test Set up an AR model for de-trended process Xt

and test φ = 1.

Consider AR(1) model

Xt = θXt−1 + εt

We wish to test

H0 : φ = 1 against H1 : φ < 1.

Rewrite model as

BXt = (φ− 1)Xt−1 + εt = πXt−1 + εt

with π = φ− 1 = Φ(1), say, and the hypotheses as

H0 : π = 0 against H1 : π < 0.
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The Dickey-Fuller (DF) test is the Wald t-test for H0 with test
statistic tDF

tDF =
φ̂− 1

se(φ̂)
=

π̂

se(π̂)

The asymptotic null distribution is non-normal, and depends
on the deterministic part of the model.

The asymptotic null only holds if εt are IID.

If not IID, need to include further terms in AR representation.

MA and ARMA models handled similarly.
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Extension to AR(p): The Augmented Dickey-Fuller (ADF) Test.

Example: AR(3).

Xt = φ1Xt−1 + φ2Xt−2 + φ3Xt−3 + εt

A unit root of

Φ(z) = 1− φ1z − φ2z
2 − φ3z

3 = 0

corresponds to Φ(1) = 0.

Test is achieved by rewriting the model as

BXt = πXt−1 + c1BXt−1 + c2BXt−2 + εt

where

π = φ1 + φ2 + φ3 − 1 = −φ(1)

c1 = −(φ2 + φ3)

c2 = −φ3
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Null hypothesis Φ(1) = 0 corresponds to

H0 : π = 0 against H1 : π < 0.

The ADF test is the Wald t-test of this hypothesis.

Need model selection to choose number of lags.

Can correct for autocorrelation in εt - use the Phillips-Perron
test that uses a standard ergodic estimate of the
autocorrelation (Newey-West).

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 143/ 171

Note: The deterministic terms in the ADF specification are
important, as they influence the asymptotic null distribution.

if Xt has a non-zero level, use

BYt = πYt−1 + c1BXt−1 + c2BXt−2 + δεt

if Xt has a deterministic trend level, use

BYt = πYt−1 + c1BXt−1 + c2BXt−2 + δ + γt + εt

In both cases, can fit model using regression methods.

In both cases, the null distribution changes.
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Note: consider the factor representation

Xt = φXt−1 + εt

Yt = Xt + µ

so that

Yt = φYt−1 + (1− φ)µ+ εt = φYt−1 + δ + εt

so there is a common factor restriction; if φ = 1,

δ = (1− φ)µ = 0.

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 145/ 171

This is not imposed by the standard t-test; consider

Yt = φYt−1 + δ + εt .

The hypotheses

H0 : φ = 1 against H1 : φ < 1.

imply

H1 : Yt = µ+ stationary process

H0 : Yt = Y0 + δt + stochastic trend.

that is, two fundamentally different models.
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Need to consider the combined null hypothesis

HC
0 : π = δ = 0

which can be tested by fitting two regressions

H1 : BYt = πYt−1 + δ + εt

HC
0 : BYt = εt .

and carrying out a likelihood ratio test to compare the fits.

Again, the null distribution is non-standard.
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Alternatively, consider the model with a trend

BYt = πYt−1 + δ + γt + εt

where the common factor restriction implies that if π = 0 then
γ = 0. Under the standard null H0, the trend will accumulate.

Again need to impose the combined null hypothesis

HC
0 : π = γ = 0

which can be tested by fitting two regressions

H1 : BYt = πYt−1 + δ + γtεt

HC
0 : BYt = δ + εt .

and carrying out a likelihood ratio test to compare the fits.

Again, the null distribution is non-standard.
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Special Events: Large shocks (breaks, changepoints) have
potentially large, permanent effects.

One large shock: may lead to bias toward accepting unit
root hypothesis, event of series is stationary.

Many large shocks: may lead to bias toward accepting
stationarity hypothesis. Series may appear mean-reverting
even if it is not.
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Kwiatkowski, Phillips, Schmidt and Shin (KPSS) Test

Assume
Yt = ξt + et

where et is stationary and ξt is a random walk

ξt = ξt−1 + vt

where vt ∼ N(0, σ2
v ) i.i.d..

If σ2
v = 0, ξt = ξ0 and Yt is stationary. Thus can test the

hypothesis

H0 : σ2
v = 0 against H1 : σ2

v > 0.

The KPSS Test is a (score) test of this hypothesis.
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Models For Changing Variance

Objective: obtain better estimates of local variance.

p’th order ARCH(p)

ARCH stands for autoregressive conditionally heteroscedastic

Assume we have a derived time series {Yt} that is (approximately)
uncorrelated but has a variance (volatility) that changes through
time,

Yt = σtεt (1)

where {εt} is a white noise sequence with zero mean and unit
variance.
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Here, σt represents the local conditional standard deviation of the
process. Note that σt is not observable directly.

{Yt} is ARCH(p) if it satisfies equation (1) and

σ2
t = α+ β1,py

2
t−1 + . . .+ βp,py

2
t−p, (2)

where α > 0 and βj ,p ≥ 0, j = 1, . . . , p (to ensure the variance
remains positive), and yt−1 is the observed value of the derived
time series at time (t − 1)
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Note

(a) the absence of the error term in equation (2).

(b) unconstrained estimation often leads to violation of the
non-negativity constraints that are needed to ensure positive
variance.

(c) quadratic form (i.e. modelling σ2
t ) prevents modelling of

asymmetry in volatility (i.e. volatility tends to be higher after
a decrease than after an equal increase and ARCH cannot
account for this).
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ARCH(1)
σ2

t = α+ β1,1y
2
t−1

Define, vt = y2
t − σ2

t ⇒ σ2
t = y2

t − vt . The model can also be
written:

y2
t = α+ β1,1y

2
t−1 + vt ,

i.e. an AR(1) model for {y2
t } where the errors, {vt}, have zero

mean, but as vt = σ2
t (ε

2
t − 1) the errors are heteroscedastic.
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(p, q)’th order generalized autoregressive conditionally
heteroscedastic model GARCH(p, q)
{Yt} is GARCH(p, q) if it satisfies equation (1) and

σ2
t = α+ β1,py

2
t−1 + . . .+ βp,py

2
t−p + γ1,qσ

2
t−1 + . . . γq,qσ

2
t−q,

where the parameters are chosen to ensure positive variance.
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Stochastic volatility models SV
Stochastic volatility models treat σt as an unobserved random
variable which is assumed to follow a certain stochastic process.
The specification for the derived series {Yt} is:

Yt = σtεt , σ2
t = exp(ht),

where εt is white noise with zero mean and unit variance, and let
ht , for example, be an AR(1) process:

ht = α+ β1,1ht−1 + ηt ,

where {ηt} is a white noise process with variance σ2
η. If |β1,1| < 1,

ht is stationary ⇒ Yt stationary.
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Notes:

(a) unlike the GARCH specification, ht (which defines in turn σt)
is NOT deterministic.

(b) the exponential specification ensures positive conditional
variance.

(c) can be further generalized by assuming, for example, ht

follows an ARMA(p, q) model.
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Harmonic with additive white noise
Here {Xt} is expressed as

Xt = cos(2πf0t + φ) + εt

f0 is a fixed frequency and {εt} is zero mean white noise with
variance σ2

ε .

Case (a) φ is constant.

E [Xt ] = E [cos(2πf0t + φ)] + E [εt ] = cos(2πf0t + φ).

so, mean depends on t ⇒ not stationary.
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Case (b): φ ∼ U[−π, π] and independent of {εt}.

E [Xt ] = E [cos(2πf0t + φ) + εt ] = E{cos(2πf0t + φ)}

Now,

E{cos(2πf0t + φ)} =

∫ π

−π
cos(2πf0t + φ)

1

2π
dφ

=

[
sin(2πf0t + φ)

2π

]π

−π

= 0.
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So E [Xt ] = 0, and, using the fact that {et} and φ are independent.

E [XtXt+τ ] = E [[cos(2πf0t + φ) + εt ] [cos(2πf0(t + τ) + φ) + εt+τ ]]

= E [cos(2πf0t + φ) cos(2πf0t + φ+ 2πf0τ)] + E [εtεt+τ ] .

Recall, as {εt} is white noise we have,

E{εtεt+τ} =

{
σ2

ε if τ = 0,
0 if τ 6= 0,

So, for τ = 0,

Cov{Xt ,Xt} = s0 = E{cos2(2πf0t + φ)}+ σ2
ε .
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Now,

E{cos2(2πf0t + φ)} =

∫ π

−π
cos2(2πf0t + φ)

1

2π
dφ

=
1

2

∫ π

−π
[1 + cos(4πf0t + 2φ)]

1

2π
dφ =

1

2
.
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So, s0 = 1
2 + σ2

ε , and for τ > 0,

Cov [Xt ,Xt+τ ] = sτ = E [cos(2πf0t + φ) cos(2πf0t + φ+ 2πf0τ)]

=
1

2
E [cos(4πf0t + 2φ+ 2πf0τ) + cos(2πf0τ)]

=
1

2

∫ π

−π
cos(2πf0τ)

1

2π
dφ

=
cos(2πf0τ)

2

[
φ

2π

]π

−π

=
cos(2πf0τ)

2

which does not depend on t ⇒ Xt is stationary.
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Trend removal and seasonal adjustment
There are certain, quite common, situations where the observations
exhibit a trend – a tendency to increase or decrease slowly steadily
over time – or may fluctuate in a periodic manner due to seasonal
effects. The model is modified to

Xt = µt + Yt

µt = time dependent mean.

Yt = zero mean stationary process.
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Trend adjustment for CO2 data: {Xt} is monthly atmospheric
CO2 concentrations expressed in parts per million (ppm) derived
from in situ air samples collected at Mauna Loa observatory,
Hawaii. Monthly data from May 1988 – December 1998, giving
N = 128. Model suggested by plot:

Xt = α+ βt + Yt .

(a) Estimate α and β by least squares, and work with the residuals

Ŷt = Xt − α̂− β̂t.

(b) Take first differences:

X
(1)
t = Xt−Xt−1 = α+βt+Yt−(α+β(t−1)+Yt−1) = β+Yt−Yt−1.
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Note: if {Yt} is stationary so is {Y (1)
t } In the case of linear

trend, if we difference again:

X
(2)
t = X

(1)
t − X

(1)
t−1 = (Xt − Xt−1)− (Xt−1 − Xt−2)

= (β + Yt − Yt−1)− (β + Yt−1 − Yt−2)

= Yt − 2Yt−1 + Yt−2, (≡ Y
(1)
t − Y

(1)
t−1 = Y

(2)
t ),

so that the effect of µt(= α+ βt) has been completely removed.
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If µt is a polynomial of degree (d − 1) in t, then dth differences of
µt will be zero (d = 2 for linear trend). Further,

X
(d)
t =

d∑
k=0

(
d

k

)
(−1)kXt−k =

d∑
k=0

(
d

k

)
(−1)kYt−k .

There are other ways of writing this. Define the difference operator

∆ = (1− B)

where BXt = Xt−1 is the backward shift operator (sometimes
known as the lag operator L – especially in econometrics). Then,

X
(d)
t = ∆dXt = ∆dYt .
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For example, for d = 2:

X
(2)
t = (1− B)2Xt = (1− B)(Xt − Xt−1)

= (Xt − Xt−1)− (Xt−1 − Xt−2)

= (β + Yt − Yt−1)− (β + Yt−1 − Yt−2)

= (Yt − Yt−1)− (Yt−1 − Yt−2)

= (1− B)2Yt = ∆2Yt .
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This notation can be incorporated into the ARMA set up; if {Xt}
is ARMA(p, q),

Xt = φ1,pXt−1 + . . .+ φp,pXt−p + εt − θ1,qεt−1 − . . .− θq,qεt−q,

Xt − φ1,pXt−1 − . . .− φp,pXt−p = εt − θ1,qεt−1 − . . .− θq,qεt−q

(1− φ1,pB − . . .− φp,pB
p)Xt = (1− θ1,qB − . . .− θq,qB

q)εt
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That is,
Φ(B)Xt = Θ(B)εt

where

Φ(B) = 1− φ1,pB − φ2,pB
2 − . . .− φp,pB

p

Θ(B) = 1− θ1,qB − θ2,qB
2 − . . .− θq,qB

q

are known as the associated or characteristic polynomials.
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Further, we can generalize the class of ARMA models to include
differencing to account for certain types of non-stationarity, namely,

Xt is called ARIMA(p, d , q) if

Φ(B)(1− B)dXt = Θ(B)εt ,

Φ(B)∆dXt = Θ(B)εt .
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Seasonal adjustment
The model is modified to

Xt = st + Yt

where

{st} is the seasonal component,

{Yt} is zero mean stationary process.

David A. Stephens Statistical Inference and Methods



Discrete Time Stationary Processes
Spectral Representations

Estimation and Forecasting
Non-stationarity and Unit Roots

Session 3: Time Series Analysis 171/ 171

Presuming that the seasonal component maintains a constant
pattern over time with period s, there are again several approaches
to removing st . A popular approach used by Box & Jenkins is to
use the operator (1− Bs):

X
(s)
t = (1− Bs)Xt = Xt − Xt−s

= (st + Yt)− (st−s + Yt−s)

= Yt − Yt−s

since st has period s (and so st−s = st).
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