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◮ Frequentist considerations

◮ Likelihood

◮ Quasi-likelihood

◮ Estimating Equations

◮ Generalized Method of Moments

◮ Bayesian
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Repeated observation of random variables X1,X2, . . . ,Xn yields
data x1, x2, . . . , xn.

Parametric Probability Model (pdf) fX |θ(x ; θ).

Objective is inference about parameter θ, a parameter in p
dimensions in parameter space Θ ⊆ R

p.

We seek a procedure for producing estimators of θ that have
desirable properties.
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Estimators: An estimator, Tn, derived from a random sample of
size n is a statistic, any function of the random variables to be
observed X1, . . . ,Xn:

Tn = t(X1, . . . ,Xn)

An estimate, tn, is a real value determined as the observed value
of an estimator by data x1, . . . , xn.

tn = t(x1, . . . , xn)

We will assess the worth of an estimator and the procedure used to
produce it by inspecting its frequentist (empirical) properties
assuming, for example, that the proposed model is correct.
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Desirable Properties of Estimators:
Suppose the true model has θ = θ0.

◮ Unbiasedness
EX |θ0

[Tn] = θ0

Asymptotic Unbiasedness

lim
n→∞

EX |θ0
[Tn] = θ0
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◮ Consistency : As n −→ ∞,

Weak consistency:
Tn

p−→ θ0

Strong consistency:
Tn

a.s.−→ θ0
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Laws of Large Numbers Under regularity conditions, for function
g , as n −→ ∞,

Weak Law:
1

n

n∑

i=1

g(Xi )
p−→ EX |θ0

[g(X )]

Strong Law:

1

n

n∑

i=1

g(Xi )
a.s.−→ p−→ EX |θ0

[g(X )]
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◮ For unbiased/asymptotically unbiased (but inconsistent)
estimators, an estimator T ⋆

n is efficient if it has smaller
variance than all other unbiased estimators.

Efficiency
VarX |θ0

[T ⋆
n ] ≤ VarX |θ0

[Tn]

Asymptotic Efficiency

lim
n→∞

VarX |θ0
[T ⋆

n ] ≤ lim
n→∞

VarX |θ0
[Tn]
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In summary, an estimator should have good frequentist properties

◮ it should recover the true value of the parameter as the
sample size becomes infinite (consistency)

◮ if an estimator is inconsistent, it may be at least
asymptotically unbiased, in which case the asymptotic
distribution should have low variance (efficient)

However, consistency/asymptotic unbiasedness are not in
themselves desirable ...
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EXAMPLE: Let X1, . . . ,Xn ∼ N(θ, 1).
Then the two estimators

T1n =
1

n

n∑

i=1

Xi = X

T2n = T1n +
100100

n

are both consistent and asymptotically unbiased for θ, with the
same asymptotic variance.

However, their finite sample behaviours are somewhat different ...
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Finite sample behaviour is also crucial. Could consider

◮ Sampling distribution of Tn for finite n, that is the empirical
behaviour Tn over different random samples of size n

◮ an asymptotic approximation to this distribution suitable for
large n

For example, we typically construct an Asymptotic Normal
approximation to this distribution

Tn ∼ AN(µn, σ
2
n)

for suitable values of µn and σn.
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The Standard error of an estimator Tn of parameter θ is

s.e. (Tn; θ) =
√

VarfX |θ
[Tn] = se(θ)

for some function se .

The estimated standard error is

e.s.e (Tn) = se

(
θ̂n

)
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Likelihood Methods

We seek a general method for producing estimators/estimates from
data under a presumed model that utilizes the observed
information in the most effective fashion.
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The likelihood function:

L(θ; x) = fX |θ(x1, . . . , xn; θ)

and under independence

L(θ; x) =

n∏

i=1

fX |θ(xi ; θ)

The log-likelihood function:

l(θ; x) =

n∑

i=1

log fX |θ(xi ; θ)
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Objective: Inference about θ via L or l

Assertion:

The likelihood contains all relevant information about
parameter θ represented by the data.
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Maximum Likelihood: Estimate θ by θ̂n = t(x1, . . . , xn)

θ̂n(x1, . . . , xn) = arg max
θ∈Θ

l(θ; x)

with corresponding estimator

θ̂n(X1, . . . ,Xn)

Maximum likelihood estimate/estimator (mle) θ̂n is often
computed as a zero-crossing of the first derivative of l(θ, x).
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Let

l̇(θ; x) = ▽l(θ; x) =

[
∂l

∂θ1
, . . . ,

∂l

∂θp

]T

be the vector of first partial derivatives. Then θ̂n solves

l̇(θ; x) = 0.

Score function:
Sθ(X ) = l̇(θ;X ).

Note: in many models

EX |θ[Sθ(X )] = 0.
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Hessian Matrix :

H(θ; x) =
[
l̈(θ; x)

]
ij

=
∂2l

∂θiθj

be the p × p matrix of second partial derivatives.

Define
ΨA

θ (X ) = −l̈(θ;X ).

Consider also
ΨB

θ (X ) = Sθ(X )Sθ(X )T.
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Then for many models

EX |θ[Ψ
A
θ (X )] = EX |θ[Ψ

B
θ (X )] = nI(θ)

where I(θ) is the unit Fisher Information for the model.

I(θ) is a positive definite/non-singular and symmetric matrix. Let

J (θ) = I(θ)−1.
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We can consider sample-based versions of these quantities
Observed Score:

Sθ(x) = l̇(θ; x).

Observed Unit Information:

IA
n (n, θ) =

1

n

n∑

i=1

ΨA
θ (xi )

or

IB
n (n, θ) =

1

n

n∑

i=1

Sθ(xi )Sθ(xi )
T
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Note: by the Laws of Large Numbers, as n −→ ∞,

IA
n (n, θ0)

p−→ I(θ0) IB
n (n, θ0)

p−→ I(θ0)
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Cramer-Rao Efficiency Bound

An efficiency bound for unbiased estimators: if Tn is unbiased,
then under regularity conditions,

VarX |θ[Tn] ≥
[
EX |θ[Ψ

A
θ (X )]

]−1
=
[
EX |θ[Ψ

B
θ (X )]

]−1

This is the Cramer-Rao Lower Bound.
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Properties of mles

Under regularity conditions, the mle is

◮ consistent

◮ asymptotically unbiased

◮ asymptotically efficient, with asymptotic variance J (θ0) equal
to the Cramer-Rao lower bound.

◮ invariant: if θ̂n estimates θ, and φ = g(θ), then φ̂n = g(θ̂n).
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Asymptotic Normality

Using the CLT,

√
n(θ̂n − θ0)

L−→ N(0,J (θ0))

or
θ̂n ∼ AN(θ0, n

−1J (θ0))

i.e. θ̂n converges to θ0 at rate
√

n.
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Hypothesis Testing & Confidence Intervals

We seek a general method for testing a specific hypothesis about
parameters in probability models.

H0 : θ = c0

H1 : θ 6= c0
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There are five crucial components to a hypothesis test, namely

◮ Test Statistic, Tn

◮ Null Distribution, distribution of Tn under H0.

◮ Critical Region, R, and Critical Value(s)(CR1 ,CR2)

Tn ∈ R =⇒ Reject H0

◮ Significance Level, α,

α = P[Tn ∈ R|H0].

◮ P-Value, p,
p = P[|Tn| ≥ |t(x)||H0].
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The Likelihood Ratio Test
The Likelihood Ratio Test statistic for testing H0 against H1 is

Tn =

sup
θ∈Θ1

fX |θ(X ; θ)

sup
θ∈Θ0

fX |θ(X ; θ)

where H0 is rejected if Tn is too large, that is, if
P [Tn ≥ k|H0] = α.

If H0 imposes q independent constraints on H1, then, as n −→ ∞

2 log Tn
A∼ χ2

q. (1)
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The Rao/Score/Lagrange Multiplier Test
The Rao/Score/Lagrange Multiplier statistic, Rn, for testing

H0 : θ = θ0

H1 : θ 6= θ0

is defined by
Rn = Z T

n [I(θ0)]
−1 Zn (2)

where

Zn =
1√
n
l̇(X ; θ0).
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For large n, if H0 is true,

Rn
A∼ χ2

p

and H0 is rejected if Rn is too large, that is, if Rn ≥ C , and where

P [Rn ≥ C |H0] = α

for significance level α.
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Interpretation and Explanation: The score test uses these
results; if H0 is true,

Sθ0(X )
A∼ N (0, nI(θ0))

so that the standardized score

Vn = L−1
θ0

Sθ0(X )
A∼ N (0, Ip)

where Ip is the p × p identity matrix, and where matrix A (θ) is
given by

Lθ0L
T
θ0

= nI (θ0) .
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Hence, by the usual normal distribution theory

Rn = V T
n Vn = Z T

n {I(θ0)}−1 Zn
A∼ χ2

p

so that observed test statistic

rn = zT
n {I(θ0)}−1 zn where zn =

1√
n

n∑

i=1

Sθ0(xi )

should be an observation from a χ2
p distribution.
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Extension: It is legitimate, if required, to replace I(θ0) by a
suitable estimate În(θ̃n). For example

În(θ̃n) =





I(θ̃n)

IA
n (n, θ̃n)

IB
n (n, θ̃n)

(3)
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The Wald Test
The Wald Test statistic, Wn, for testing H0 against H1 : θ 6= θ0 is
defined by

Wn =
√

n
(
θ̃n − θ0

)T [
În(θ̃n)

]√
n
(
θ̃n − θ0

)
(4)

Then, for large n, if H0 is true,

Wn
A∼ χ2

p

and H0 is rejected if Wn is too large, that is, if Wn ≥ C , and where
P[Wn ≥ C |H0] = α for significance level α.
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Interpretation and Explanation: the logic of the Wald test
depends on the asymptotic Normal distribution of the score
equation derived estimates

√
n
(
θ̃n − θ0

)
d→ N

(
0, I(θ0)

−1
)

so that
θ̃n

A∼ N
(
θ0, I(θ0)

−1
)

Again, estimates of the Fisher Information such as those in (3) can
be substituted for I (θ0) in (4).
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Extension to tests for components of θ.
The theory above concerns tests for the whole parameter vector θ.
Often it is of interest to consider components of θ, that is, if
θ = (θ1, θ2), we might wish to test

H0 : θ1 = θ10, with θ2 unspecified

H1 : θ1 6= θ10, with θ2 unspecified

The Rao Score and Wald tests can be developed to allow for
testing in this slightly different context.
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Suppose that θ1 has dimension m and θ2 has dimension p −m. Let
the Fisher information matrix I(θ) and its inverse be partitioned

I(θ) =

[
I11 I12
I21 I22

]

J (θ) =

[
[I11.2]

−1 − [I11.2]
−1 I12 [I22]

−1

− [I22.1]
−1 I21 [I11]

−1 [I22.1]
−1

]

be a partition of the information matrix, where

I11.2 = I11 − I12 [I22]
−1 I21

I22.1 = I22 − I21 [I11]
−1 I12

and all quantities depend on θ.
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◮ The Rao/score/LM statistic is given by

Rn = Z T
n0

[
În(θ̃

(0)
n )
]−1

Zn0
A∼ χ2

m

where θ̃
(0)
n is the estimate of θ under H0 and În(θ̃

(0)
n ) is the

estimated Fisher information I1, evaluated at θ̃
(0)
n , obtained

using any of the estimates in (3).
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◮ The Wald statistic is given by

Wn =
√

n(θ̃n1 − θ10)
T

[
Î
(11.2)
n (θ̃n)

]√
n
(
θ̃n1 − θ10

)
A∼ χ2

m

where θ̃n1 is the vector component of θ̃n corresponding to θ1

under H1, and Î
(11.2)
n (θ̃n) is the estimated version of I11.2

(using the sample data, under H1) evaluated at θ̃n, obtained
using any of the estimates in (3).
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Confidence Intervals
A 100(1 − γ)% confidence interval (CI) C(X ) for parameter θ is an
interval such that

P[θ ∈ C(X )] = 1 − γ

under assumptions made about X = (X1,X2, . . . , n) from model
fX |θ. In most cases this corresponds to an interval
C(X ) ≡ (L(X ),U(X )) such that

P[L(X ) ≤ θ ≤ U(X )] = 1 − γ

under fX |θ.

Notice that C(X ) is a random interval that can be estimated for
real data x by C(x).
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Example: If X1, . . . ,Xn ∼ N(µ, σ2), then

√
n(X − µ)

σ
∼ N(0, 1)

so that, under this model, if γ = 0.05,

P

[
−1.96 ≤

√
n(X − µ)

σ
≤ 1.96

]
= 1 − γ

and a 100(1 − γ)% CI is given by

L(X ) = X − 1.96
σ√
n

U(X ) = X + 1.96
σ√
n
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Note: Connection with Testing

Under H0 : θ = θ0, for test statistic Tn and Critical Region R,

α = P[Tn ∈ R|H0].

Typically, Tn is a pivotal quantity whose form depends on θ, but
whose distribution does not.

It can be shown that the 100(1 − γ)% CI is the range of values of
θ0 that can be hypothesized under H0 such that the hypothesis is
not rejected at significance level γ.
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The coverage probability of any random interval C(X ) is the
probability

P[θ ∈ C(X )]

computed under the true model fX |θ.

Thus the coverage probability for a true 100(1− γ)% CI is (1− γ).

In complicated estimation problems, confidence intervals and
coverage probabilities are typically verified using simulation.
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Quasi-Likelihood

Quasi-likelihood (QL) methods were introduced to extend the
models that can be fitted to data.

The origin of QL methods lie in the attempts to extend the normal
linear model to non-normal data, that is, to extend to

Generalized Linear Models

We again begin with a parametric probability model, fY |θ.
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Exponential Family of Distributions : Suppose

fY |ξ(y ; ξ) = exp

{
aξ(ξ)bξ(y) − cξ(ξ)

φ
+ d(y , φ)

}

or equivalently, in canonical form, writing θ = aξ(ξ), we have

fY |θ(y ; θ) = exp

{
θb(y) − c(θ)

φ
+ d(y , φ)

}

Without loss of generality, we assume b(y) = y . Then

EY |θ[Y ] = ċ(θ) = µ VarY |θ[Y ] = φc̈(θ) = φV (µ),

say, that is, expectation and variance are functionally related.
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A slight generalization allows different data points to be weighted
by potentially different weights, wi , that is, the likelihood becomes

fY |θ(yi ; θ) = exp

{
wi

θyi − c(θ)

φ
+ d(yi , φ/wi )

}

so that wi is a known constant that changes the scale of datum i .
Then

EY |θ[Y ] = µ VarY |θ[Y ] = φV (µ)/w .
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A Generalized Linear Model is a model such that the expectation is
modelled as a function of predictors X , that is

µ = ċ(θ) = g−1(Xβ)

for some link function, g , a monotone function onto R. The
canonical link is the link such that

g(ċ(θ)) = θ.

The term Xβ is the linear predictor.
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For an exponential family GLM, the log-likelihood in the canonical
parameterization is

l(β; y) = constant +

n∑

i=1

{
wi

θiyi − c(θi )

φ
+ d(yi , φ/wi )

}

Partial differentiation with respect to βj yields a score equation :

∂l(β; y)

∂βj

=
1

φ

n∑

i=1

wi
∂θi

∂βj

(yi − ċ(θi )) =
1

φ

n∑

i=1

wi
∂θi

∂βj

(yi − µi )
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But, with link function g , we have

g(µi ) = g(ċ(θi )) = Xiβ = ηi

thus
∂ηi

∂βj

=
∂g(ċ(θi ))

∂βj

= ġ(ċ(θi ))c̈(θi )
∂θi

∂βj

and hence, as c̈(θi ) = V (µi ),

∂ηi

∂βj

= ġ(µi )V (µi )
∂θi

∂βj

.
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But
∂ηi

∂βj

= Xij .

Thus we have for the j th (j = 1, . . . , p) score equation

∂l(β; y)

∂βj

=
n∑

i=1

wi

φ

(yi − µi )Xij

ġ(µi )V (µi )
= 0.

where, recall,
µi = g−1(Xiβ).

Estimation of (β1, . . . , βp) can be achieved by solution of this

system of equations. Note that φ can be omitted from this system
as φ > 0 by assumption.
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If the canonical link function is used

θi = Xiβ =⇒ ∂θi

∂βj

= Xij

and the score equations become

∂l(β; y)

∂βj

=

n∑

i=1

wi (yi − µi )Xij = 0 j = 1, . . . , p.
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In this model, the assumptions about the specific form of fY |θ

allowed the construction of the score equations; for different
probability models, the different components take different forms:

◮ fY |θ(y ; θ) ≡ Poisson(λ)

◮ canonical parameter θ = log λ,
◮ canonical link g(t) = log(t),
◮ µ = λ = exp(θ),
◮ V (µ) = λ = µ (so that V (t) = t).
◮ wi = 1,
◮ φ = 1.
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◮ fY |θ(y ; θ) ≡ Binomial(n, ξ)

◮ canonical parameter θ = log(ξ/(1 − ξ)),
◮ canonical link g(t) = log(t/(1 − t)),
◮ µ = ξ = exp(θ)/(1 + exp(θ)),
◮ V (µ) = ξ(1 − ξ) = µ(1 − µ) (so that V (t) = t(1 − t)).
◮ wi = ni ,
◮ φ = 1.

Note: yi presumed to be modelled in proportionate form, that is, if
Z ∼ Binomial(n, ξ), we model Y = Z/n.

Session 2: Methods of Inference 52/ 132

◮ fY |θ(y ; θ) ≡ Normal(ξ, σ2)

◮ canonical parameter θ = ξ,
◮ canonical link g(t) = 1,
◮ µ = ξ,
◮ V (µ) = 1 (so that V (t) = 1).
◮ wi = 1,
◮ φ = σ2.

Note: here mean and variance are modelled orthogonally.
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Quasi-Likelihood: The score equations are key in the estimation,
and are derived directly from the probabilistic assumptions:

n∑

i=1

wi

(yi − µi )Xij

ġ(µi )V (µi )
= 0 j = 1, . . . , p.

However, these equations can be used as the basis for estimation
even if they are not motivated by probabilistic modelling.

We can propose forms for V (µi ) directly without reference to any
specific model. This is the basis of quasi-likelihood methods.
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Examples:

◮ V (µi ) = µ2
i , the constant coefficient of variation model

where
E [Yi ]√
Var [Yi ]

=
µi

φ1/2µi

=
1

φ1/2

◮ V (µi ) = φiµi (1 − µi ) (an overdispersed binomial model)

◮ V (µi ) = φiµi (an overdispersed Poisson model)

◮ V (µi ) = φiµ
2
i (an overdispersed Exponential model).
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Estimating Equations

The quasi-likelihood approach is a special case of a general
approach to estimation based on estimating equations.

An estimating function is a function

G(θ) =

n∑

i=1

G(θ,Yi ) =

n∑

i=1

Gi (θ) (5)

of the same dimension as θ for which

E [G(θ)] = 0. (6)
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The estimating function G(θ) is a random variable because it is a
function of Y . The corresponding estimating equation that defines
the estimator θ̂ has the form

G(θ̂) =

n∑

i=1

Gi (θ̂) = 0. (7)
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For inference, the frequentist properties of the estimating function
are derived and are then transferred to the resultant estimator.
The estimating function may be constructed to be a simple
function of the data, while the estimator of the parameter that
solves (7) will often be unavailable in closed form.

The estimating function (5) is a sum of random variables which
provides the opportunity to evaluate its asymptotic properties via a
central limit theorem. The art of constructing estimating functions
is to make them dependent on distribution-free quantities, for
example, the population moments of the data.

The following theorem that forms the basis for asymptotic
inference.
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Theorem: Estimator θ̂n which is the solution to

G(θ̂n) =
n∑

i=1

Gi ( θ̂n) = 0,

has asymptotic distribution

θ̂n
A∼ N

(
θ,A−1BAT−1

)
,

where

A = An(θ) = E

[
∂G

∂θT

]
=

n∑

i=1

E

[
∂Gi (θ)

∂θT

]

B = Bn(θ) = Cov(G) =
n∑

i=1

Cov{Gi (θ)}.
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The form of the covariance of the estimator here, the covariance of
the estimating function, flanked by the inverse of the Jacobian of
the transformation from the estimating function to the parameter.

In practice, A = An(θ) and B = Bn(θ) are replaced by
Â = An(θ̂n ) and B̂ = Bn(θ̂n ), respectively. In this case, we have

θ̂n
A∼ Np

(
θ, Â−1B̂ÂT−1

)
, (8)

since Â
p−→ A and B̂

p−→ B.
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The accuracy of the asymptotic approximation to the sampling
distribution of the estimator is dependent on the parameterization
adopted. A rule of thumb is to obtain the confidence interval on a
reparameterization which takes the parameter onto the real line
(for example, the logistic transform for a probability, or the
logarithmic transform for a dispersion parameter), and then to
transform to the more interpretable scale.

Estimators for functions of interest, φ = g(θ), may be obtained
via φ̂ = g( θ̂), and the asymptotic distribution may be found using
the delta method.
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Sandwich Estimation
A general method of avoiding stringent modelling conditions when
the variance of an estimator is calculated is provided by sandwich
estimation.

The basic idea is to estimate the variance of the data empirically
with minimum modelling assumptions, and to incorporate this in
the estimation of the variance of an estimator.
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We have seen that when the estimating function corresponds to a
score equation derived from a probability model, then under the
model

I = A = −B

so that

Var( θ̂ ) = A(θ)−1B(θ)A(θ)T−1 = I(θ)−1.

If the model is not correct then this equality does not hold, and
the variance estimator will be incorrect.
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An alternative is to evaluate the variance empirically via

Â =

n∑

i=1

∂

∂θ
G(θ̂,Yi ),

and

B̂ =
n∑

i=1

G(θ̂,Yi )G(θ̂,Yi )
T.

This method is general and can be applied to any estimating
function, not just those arising from a score equation.
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Suppose we assume E [Y] = µ and Var(Y) = φV with
Var(Yi ) = φV (µi ), and Cov(Yi ,Yj) = 0, i , j = 1, ..., n, i 6= j , as a
working covariance model.

Under this specification it is natural to take the quasi-likelihood as
an estimating function, in which case

Cov{U(β)} = DTV−1Cov(Y)V−1D/φ2

to give

Vars(β̂) = (DTV−1D)−1DTV−1Cov(Y)V−1D(DTV−1D)−1,

and so the appropriate variance is obtained by substituting in the
correct form for Cov(Y) which is, of course, unknown.
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However, a simple “sandwich” estimator of the variance is given by

Vars(β̂) = (DTV−1D)−1DTV−1RTRV−1D(DTV−1D)−1,

where R = (R1, ...,Rn)
T is the n × 1 vector with Ri = Yi − µi (β̂).

This estimator is consistent for the variance of β̂, under correct
specification of the mean, and with uncorrelated data. There is
finite sample bias in Ri as an estimate of Yi − µi (β) and versions
that adjust for the estimation of the parameters β are also available
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The great advantage of sandwich estimation is that it provides a
consistent estimator of the variance in very broad situations. There
are two things to bear in mind

◮ For small sample sizes, the sandwich estimator may be highly
unstable, and in terms of mean squared error model-based
estimators may be preferable for small to medium sized n;
empirical is a better description of the estimator than robust.

◮ If the model is correct, then the model-based estimators are
more efficient.
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Generalized Estimating Equations

The models above focus on independent data only. However, the
methods can be extended to the dependent data cases.

Recall the Normal Linear (regression) model

Y = Xβ + ǫ

where

◮ Y is n × 1,

◮ X is n × p,

◮ β is p × 1,

◮ ǫ is n × 1,

and ǫ ∼ N(0, σ2In) for identically distributed errors.
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More generally, we can assume ǫ ∼ N(0,Σ) and model the
observable quantities as dependent

◮ repeated observations on a series of N experimental units that
are modelled independently, so that Σ is block diagonal:

Σ =




Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · ΣN




◮ correlated data from one stochastic process
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In this model, we have the ML (and GLS) estimates (conditional
on Σ) given by

β̂n = (X TΣ−1X )−1X TΣ−1y

and it follows that β̂n is unbiased, and Normally distributed with
variance

(X TΣ−1X )−1
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Typically Σ is not known, and possibly contains unknown
parameters, α. It can be estimated in a number of ways

◮ ML (distribution-based)

◮ REML (distribution-based)

◮ Robust (sandwich) estimation (model-free)
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An estimating equation approach can be used to view this form of
estimation in a distribution-free context. We consider the
Generalized Estimating Equation given by

G(β) = X TW−1(y − Xβ)

for symmetric, non-singular matrix W (that is, a matrix version of
the independent case given above). Then E [G(β)] = 0, and

β̂W = (X TW−1X )−1X TW−1y

is unbiased with

Var(β̂W ) = (X TW−1X )−1X TW−1ΣW−1X (X TW−1X )−1
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Could choose

◮ W = Σ, so that

Var(β̂W ) = (X TΣ−1X )−1

◮ W = I, so that

Var(β̂W ) = (X TX )−1X TΣX (X TX )−1.

We still need to estimate Σ = Σ(α).
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We focus on the repeated measures case, where independent
units i = 1, . . . ,N has n1, . . . , nN observations.

Suppose that Σi = Wi , a known constant “working” covariance
matrix. Then we have

β̂W =

(
N∑

i=1

X T
i W−1

i Xi

)−1( N∑

i=1

X T
i W−1

i yi

)

with

Var(β̂W ) = (X TW−1X )−1 =

(
N∑

i=1

X T
i W−1

i Xi

)−1
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If W = W (α, β), then the corresponding estimating function is

G(α, β) =
N∑

i=1

X T
i W−1

i (α, β)(yi − Xiβ)

If α is consistently estimated by α̂n, then we can substitute in and
leave the estimating function

G(β) =

N∑

i=1

X T
i W−1

i (α̂n, β)(yi − Xiβ)

and β̂W can be found using the usual iterative schemes.
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In this case, the estimated variance of β̂W is given by

V̂ar(β̂W ) =

(
N∑

i=1

X T
i W−1

i (α̂n, β̂n)Xi

)−1

×
(

N∑

i=1

X T
i W−1

i (α̂n, β̂n)Σ̂iW
−1
i (α̂n, β̂n)Xi

)

×
(

N∑

i=1

X T
i W−1

i (α̂n, β̂n)Xi

)−1

where it still remains to estimate Σ by Σ̂.
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We use the estimate based on the quantities

(yi − Xi β̂n)(yi − Xi β̂n)
T i = 1, . . . ,N.

For example, for a balanced design (all ni equal to M), with
common covariances, for equally-spaced data, we estimate

[Σi ]jj =
1

NM

N∑

i=1

M∑

j=1

(yij − Xij β̂n)
2

and

[Σi ]jk =
1

N

N∑

i=1

(yij − Xij β̂n)(yik − Xik β̂n).
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The model can be extended by the inclusion of a link function h
such that

µi = h(Xiβ)

in which case the estimating function is

G(β) =

N∑

i=1

DT
i W−1

i (α, β)(yi − Xiβ)

where Di is the ni × p matrix of partial derivatives.

[Di ]jk =
∂µij

∂βk

for j = 1, . . . , ni , k = 1, . . . , p.

Session 2: Methods of Inference 78/ 132

Summary: GEE given by estimating function

G(α, β) =

N∑

i=1

DT
i W−1

i (yi − µi )

where

◮ µi = h(Xiβ)

◮ Di =
∂µi

∂βT
= X T

i

◮ Wi is a working covariance model.
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◮ ǫ̂ = yi − µ̂i = yi − h(Xi β̂)

◮ D̂i is Di evaluated at µ̂i .

◮ Â given by

Â =
N∑

i=1

D̂T
i W−1

i D̂i

◮ B̂ given by

B̂ =

(
N∑

i=1

D̂T
i W−1

i ǫ̂i ǫ̂
T
i W

−1
i D̂i

)

◮ the variance of β̂ is Â−1B̂Â−1
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Generalized Method of Moments

The Generalized Method of Moments (GMM) approach to
estimation is designed to produce estimates that satisfy moment
conditions that are appropriate in the context of the modelling
situation.

It is an extension to conventional method of moments (MM) in
which theoretical and empirical moments are matched.

See Hall (2005), Generalized Method of Moments, Oxford
Advanced Texts in Econometrics.
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Example: X1, . . . ,Xn ∼ Normal(µ, σ2), independent. We have

EX |θ[X ] = µ EX |θ[X
2] = σ2.

We equate to the first two empirical moments

m1 = x =
1

n

n∑

i=1

xi m2 =
1

n

n∑

i=1

x2
i

yielding equations for estimation

m1 = µ m2 = µ2 + σ2,

or equivalently

m1 − µ = 0

m2 − (µ2 + σ2) = 0 (9)
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Example: X1, . . . ,Xn ∼ Gamma(α, β), independent. We have

EX |θ[X ] =
α

β
EX |θ[X

2] =
α(α + 1)

β2
.

We equate to the first two empirical moments

m1 = x =
1

n

n∑

i=1

xi m2 =
1

n

n∑

i=1

x2
i

yielding

α̂n =
m2

1

m2 − m2
1

β̂n =
m1

m2 − m2
1
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A problem with this approach is that typically p is finite (that is,
we have a finite number of parameters to estimate), and (often) an
infinite number of moments to select from; for example, we could
use

EX |θ[X
3] =

α(α + 1)(α + 2)

β3
EX |θ[X

4] =
α(α + 1)(α + 2)(α + 3)

β4

as two equations to estimate α and β.

That is, the MM estimator is not uniquely defined.
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Econometric Model Suppose, for t = 1, 2, . . . ,, we have

yD
t = α0xt + ǫDt

yS
t = β01nt + β02xt + ǫSt (10)

yD
t = yS

t (= yt , say)

where, in year t,

◮ yD
t is the Demand,

◮ yS
t is the Supply,

◮ xt is the price,

◮ nt is a factor influencing supply.

We wish to estimate α0, given pairs (xt , yt), t = 1, . . . ,T .
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OLS does not work effectively in this model; the estimates are
typically biased.

Instead suppose that there is an observable variable zD
t related to

xt , but so that
Cov [zD

t , ǫDt ] = 0

e.g. any of the factors that affect supply, nt .

It is typical to assume that E [ǫDt ], so that

E [yD
t ] = α0E [xt ].
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Then taking expectations through equation (10) we have the
following relationship

E [zD
t yt ] − α0E [zD

t xt ] = 0 (11)

and thus an MM estimate is

α̂T =

T∑

t=1

zD
t yt

T∑

t=1

zD
t xt

.
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GMM proceeds as follows: we define a population moment
condition via vector function g as

EV |θ[g(vt , θ)] = 0.

For example, in the Normal example above, from equation (9), we
have

g(Vt , θ) =

[
vt − µ

v2
t − µ − σ2

]
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In the econometric supply/demand model (11) we have

g(vt , θ) = zD
t yt − α0z

D
t xt

so that vt = (zD
t , yt , xt)

T, and θ = α0.
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The Generalized Method of Moments (GMM) Estimator of
parameter θ based on q moment conditions

E [g(Vt , θ)] = 0.

is given as the value of θ that minimizes

QT (θ) = gT (θ)TWTgT (θ)

where

gT (θ) =
1

T

T∑

t=1

g(vt , θ)

and WT is a positive semidefinite matrix such that WT
p−→ W , a

constant positive definite matrix, as T −→ ∞.
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Note: in general q ≥ p.

◮ If q = p, then the system is just identified.

◮ If q > p, then the system is over-identified.

Over-identification is what distinguishes GMM from MM.

Some mild regularity conditions are needed to ensure that the
estimation procedure works effectively.
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Regularity Conditions:

◮ strict stationarity,

◮ g is continuous in θ for all vt , finite expectation that is
continuous on Θ,

◮ q population moment constraints

E [g(vt , θ0)] = 0 (q × 1)

◮ global identification

E [g(Vt , θ
⋆)] 6= 0 θ⋆ 6= θ0
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◮ Conditions on the derivative of g : the (q × p) matrix of
derivatives of g with respect to the elements of θ

∂gj

∂θk

◮ θ0 is an interior point of Θ,

◮ the expectation matrix

E

[
∂g

∂θT

]

exists and is finite, and has rank p when evaluated at θ0.
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Recall that the estimator, θ̂T is the value that minimizes

QT (θ) = gT (θ)TWTgT (θ)

where

gT (θ) =
1

T

T∑

t=1

g(vt , θ) (q × 1).

Under the regularity conditions, we have

D(v , θ̂T )TWTgT (θ̂T ) = 0 (p × 1)

where

D(v , θ) =
1

T

T∑

t=1

∂g(vt , θ)

∂θT
(q × p).
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Alternative representation: moment condition

F (θ0)
TW 1/2E [g(vt , θ0)] = 0

where

F (θ0) = W 1/2E

[
∂g(vt , θ0)

∂θT

]

We have rank{F (θ0)} = p.

Identifying Restrictions:

F (θ0)(F (θ0)
TF (θ0))

−1F (θ0)
TW 1/2E [g(vt , θ0)] = 0

Overidentifying Restrictions:

(1q − F (θ0)(F (θ0)
TF (θ0))

−1F (θ0)
T)W 1/2E [g(vt , θ0)] = 0
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Asymptotic Properties: under mild regularity conditions

θ̂T
p−→ θ0

(uniformly on Θ), and

T 1/2(θ̂T − θ0)
L−→ N(0,MSMT)

where
S = lim

T−→∞
Var

[
T 1/2gT (θ0)

]

and
M = (DT

0WD0)
−1DT

0W

with

D0 = E

[
∂g(vt , θ0)

∂θT

]
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M can be estimated using

M̂T = (DT (θ̂T )TWTDT (θ̂T ))−1DT (θ̂T )TWT

where

DT (θ) =
1

T

T∑

t=1

∂g(vt , θ)

∂θT

Estimation of S is more complicated; a number of different
methods exist to produce an estimate Ŝ , depending on the context.
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Optimal choice of W : It can be shown that the optimal choice of
W is S−1, so in the finite sample case we use

WT = Ŝ−1
T .

In practice, an iterative procedure can be used:

◮ At step 1, set WT = 1q. Estimate θ̂T (1), and then Ŝ−1
T (1).

◮ At step 2, 3, . . ., set WT = Ŝ−1
T (i − 1). Estimate θ̂T (i), and

then Ŝ−1
T (i).

◮ Iterate until convergence.

This algorithm typically converges in relatively few steps.
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Implementation in the Linear Regression Model.
Consider the model

yt = xT
t θ0 + ut t = 1, . . . ,T

with instruments zt , where

◮ xt is p × 1

◮ zt is q × 1.

Define
ut(θ) = yt − xT

t θ0
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Assumptions:

◮ (Strict) Stationarity

◮ zT satisfies the population moment condition (PMC)

E [ztut(θ0)] = 0

(an orthogonality condition).
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Fundamental Decomposition:

E [ztut(θ)] = E [ztut(θ0)] + E [ztx
T
t ](θ0 − θ)

so that, via the PMC

E [ztut(θ)] = E [ztx
T
t ](θ0 − θ),

so θ0 is identified if

E [ztx
T
t ](θ0 − θ) 6= 0.

Note that this is a linear system; E [ztx
T
t ] is a (q × p) matrix - we

need
rank{E [ztx

T
t ]} = p.
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Estimator: We have (in matrix form)

QT (θ) =
{
T−1U(θ)TZ

}
WT

{
T−1Z TU(θ)

}

where now

◮ y is (T × 1),

◮ X is (T × p),

◮ Z is (T × q),

◮ U is (T × 1),
U(θ) = y − Xθ

Then

θ̂T =
({

T−1X TZ
}

WT

{
T−1Z TX

})−1 {
T−1X TZ

}
WT

{
T−1Z Ty

}

Session 2: Methods of Inference 102/ 132

The minimization is equivalent to solving the system

{
T−1X TZ

}
WTT−1Z TU(θ̂T ) = 0.

Let
F T = E [xtz

T
t ](W 1/2)T

then GMM estimation is equivalent to solving

F (F TF )−1F TW 1/2E [ztut(θ0)] = 0

which are the identifying conditions in this case.
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Asymptotic properties: Let

M = (F TF )−1F TW 1/2

where F = W 1/2E [ztx
T
t ]. Note that

M = (E [xtz
T
t ]WE [ztx

T
t ])

−1
E [xtz

T
t ]W

Then θ̂T is consistent for θ0, and

T 1/2(θ̂T − θ0)
L−→ N(0,MSMT)

S = lim
T−→∞

Var

[
T−1/2

T∑

t=1

ztut

]

and where, in the case of independence across time S = E [u2
t ztz

T
t ].
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For practical purposes, the expectations are replaced by empirical
averages over the T observations, for example, F is replaced by
F̂T , where

F̂T = W
1/2
T

{
T−1Z TX

}

and, for example,

ŜT =
1

T

T∑

t=1

û2
t ztz

T
t

where
ût = yt − xT

t θ̂T .
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Optimal choice of W : As before the optimal choice is

W = S−1

and so in estimation
WT = Ŝ−1

T .

An iterative procedure can again be used:

◮ set WT = 1q or WT = (T−1Z TZ )−1 and obtain θ̂T and ŜT

◮ set WT = Ŝ−1
T

and so on.
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Test for mis-specification: Using the asymptotic results, it can
be shown that

JT = TQ(θ̂T ) = T−1U(θ̂T )TZŜ−1
T Z TU(θ̂T )

L−→ χ2
q−p

under the null hypothesis

H0 : E [ztut(θ0)] = 0.

This test (Sargan’s Test) allows assessment of model
mis-specification (i.e. assessment of selected instruments).

Asymptotics also yield tests for individual coefficients (Wald-type
tests).
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Bayesian Methods

The classical view of Statistical Inference Theory contrasts with
the alternative Bayesian approach.

In Bayesian theory, the likelihood function still plays a central role,
but is combined with a prior probability distribution to give a
posterior distribution for the parameters in the model. Inference,
estimation, uncertainty reporting and hypothesis testing can be
carried out within the Bayesian framework.
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Some Reasons To Be Bayesian

◮ Inference through Probability (coherence, representations of
uncertainty for observables)

◮ Prediction

◮ Ease of implementation

◮ Ease of interpretation

◮ The Logic of Conditional Probability

◮ Decision Theory (optimal decision making)
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Implementation Issues

◮ Analytic

◮ Analytic Approximation

◮ Numerical I : Numerical Integration

◮ Numerical II: Simulation and Monte Carlo

◮ Numerical III: Markov chain Monte Carlo
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Key Technical Results

◮ De-Finetti Representation

◮ Posterior Asymptotic Normality

◮ Consistency
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Different views of Bayesianism

◮ Subjectivist

◮ Objectivist

◮ Regularizers

◮ Pragmatist

◮ Opportunist (post-Bayesian)
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SOME REASONS NOT TO BE BAYESIAN
(or rather, issues “to be managed” ...)

◮ Prior specification

◮ Computation

◮ Hypothesis Testing

◮ Model checking

◮ Model selection
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In the Bayesian framework, inference about an unknown parameter
θ is carried out via the posterior probability distribution that
combines prior opinion about the parameter with the information
contained in the likelihood fX |θ (x ; θ) which represents the data
contribution. In terms of events, Bayes Theorem says that

P(B|A) =
P(A|B)P(B)

P(A)

that is, it relates the two conditional probabilities P(A|B) and
P(B|A).
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It follows that we can carry out inference via the conditional
probability distribution for parameter θ given data X = x .

Specifically for parameter θ, the posterior probability
distribution for θ is denoted pθ|X (θ|x), and is calculated as

pθ|X (θ|x) =
fX |θ (x ; θ) pθ (θ)∫
fX |θ (x ; θ) pθ (θ) dθ

= c(x)fX |θ (x ; θ) pθ (θ) (12)

say, where fX |θ (x ; θ) is the likelihood, and pθ (θ) is the prior
probability distribution for θ.
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The denominator in (12) can be regarded as the marginal
distribution (or marginal likelihood) for data X evaluated at the
observed data x

fX (x) =

∫
fX |θ (x ; θ) pθ (θ) dθ. (13)
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Inference for the parameter θ via the posterior pθ|Y (θ|y) can be
carried out once the posterior has been computed. Intuitively
appealing methods rely on summaries of this probability
distribution, that is, moments or quantiles. For example, one
Bayes estimate, θ̂B of θ is the posterior expectation

θ̂B = Epθ|X
[θ|X = x ] =

∫
θpθ|X (θ|x)dθ

whereas another is the posterior mode , θ̂B , that is, the value of
θ at which pθ|X (θ|x) is maximized, and finally the posterior
median that satisfies

∫
bθB

−∞
pθ|X (θ|x)dθ =

1

2
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A 100(1 − α) Bayesian Credible Interval for θ is a subset C of
Θ such that

P [θ ∈ C ] ≥ 1 − α

The 100(1 − α)Highest Posterior Density Bayesian Credible
Interval for θ, subject to P[θ ∈ C ] ≥ 1 − α is a subset C of Θ
such that C =

{
θ ∈ Θ : pθ|X (θ|x) ≥ k

}
where k is the largest

constant such that
P [θ ∈ C ] ≥ 1 − α.
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Bayesian Inference and Decision Making
Suppose that, in an inference setting, a decision is to be made, and
the decision is selected from some set D of alternatives.
Regarding the parameter space Θ as a set of potential “states of
nature”, within which the “true” state θ lies.

Define the loss function for decision d and state θ as the loss (or
penalty) incurred when the true state of nature is θ and the
decision made is d . Denote this loss as

L(d , θ)
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With prior π(θ) and no data, the expected loss (or the Bayes
loss) is defined as

Eθ [L(d , θ)] =

∫
L(d , θ)pθ (θ) dθ

The optimal Bayesian decision is

dB = arg min
d∈D

Epθ
[L(d , θ)]

that is, the decision that minimizes the Bayes loss.
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If data are available, the optimal decision will intuitively become a
function of the data. Suppose now that the decision in light of the
data is denoted δ(x) (a function from X to D , and the associated
loss is L(δ(x), θ))

The risk associated with decision δ(X ) is the expected loss
associated with δ(X ), with the expectation taken over the
distribution of X given θ

Rθ(δ) = EX |θ [L(δ(X ), θ)] =

∫
L(δ(X ), θ)fX |θ(x ; θ)dx
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The Bayes risk expected risk Rθ(δ) associated with δ(X ), with
the expectation taken over the prior distribution of θ

R(δ) = Eθ [Rθ(δ)] = Eθ

[
EX |θ [L(δ(X ), θ)]

]

=

∫ {∫
L(δ(x), θ)fX |θ(x ; θ)dx

}
pθ (θ) dθ

=

∫ ∫
L(δ(x), θ)fX (x)pθ|X (θ|x)dxdθ

=

∫ {∫
L(δ(x), θ)pθ|X (θ|x)dθ

}
fX (x)dx .
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With prior pθ (θ) and fixed data x , the optimal Bayesian decision,
termed the Bayes rule is

dB =arg min
δ∈D

R(δ) = arg min
δ∈D

∫ {∫
L(δ(x), θ)pθ|X (θ|x)dθ

}
fX (x)dx

= arg min
δ∈D

∫
L(δ(x), θ)pθ|X (θ|x)dθ

that is, the decision that minimizes the Bayes risk, or equivalently
(posterior) expected loss in making decision δ, with expectation
taken with respect to the posterior distribution pθ|X (θ|x).
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Applications of Decision Theory to Estimation
Under squared error loss

L(δ(x), θ) = (δ(x) − θ)2

the Bayes rule for estimating θ is

δ(x) = θ̂B = Epθ|X
[θ|x ] =

∫
θpθ|X (θ|x)dθ

that is, the posterior expectation.
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Under absolute error loss

L(δ(x), θ) = |δ(x) − θ|

the Bayes rule for estimating θ is the solution of

∫ δ(x)

−∞
pθ|X (θ|x)dθ =

1

2

that is, the posterior median.
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Bayesian Hypothesis Testing
To mimic the Likelihood Ratio testing procedure outlined in
previous sections. For two hypotheses H0 and H1 define

α0 = P [H0|X = x ] α1 = P [H1|X = x ]

For example,

P [H0|X = x ] =

∫

R

πθ|X (θ|x)dθ

where R is some region of Θ. Typically, the quantity

P [H0|X = x ]

P [H1|X = x ]

(the posterior odds on H0) is examined.
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Example: To test two simple hypothesis

H0 : θ = θ0

H1 : θ = θ1

define the prior probabilities of H0 and H1as p0 and p1 respectively.
Then, by Bayes Theorem

P [H1|X = x ]

P [H0|X = x ]
=

fX |θ(x ; θ1)p1

fX |θ(x ; θ0)p0 + fX |θ(x ; θ1)p1

fX |θ(x ; θ0)p0

fX |θ(x ; θ0)p0 + fX |θ(x ; θ1)p1

=
fX |θ(x ; θ1)p1

fX |θ(x ; θ0)p0
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More generally, two hypotheses or models can be compared via the
observed marginal likelihood that appears in (13), that is if

fX (x ;Model 1)

fX (x ;Model 0)
=

∫
f

(1)
X |θ (x ; θ1) pθ1 (θ1) dθ1

∫
f

(0)
X |θ (x ; θ0) pθ0 (θ0) dθ0

is greater than one we would favour Model 1 (with likelihood f
(1)
X |θ

and prior pθ1) over Model 0 (with likelihood f
(0)
X |θ and prior pθ0).
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Prediction The Bayesian approach to prediction follows naturally
from probability logic. The posterior predictive distribution for
random variables X ⋆, given data X = x , is computed as

fX⋆|X (x⋆|x) =

∫
fX⋆|θ (x⋆; θ) pθ|X (θ|x) dθ

Point predictions and prediction intervals can be computed from
this distribution.
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The posterior distribution

pθ|X (θ|x) =
fX |θ (x ; θ) pθ (θ)∫
fX |θ (x ; θ) pθ (θ) dθ

is a joint probability distribution in R
p. Computation of posterior

summaries, estimates etc. typically requires an integral in a high
dimension. This can prove problematic if the likelihood prior
combination is not analytically tractable.
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When pθ|X (θ|x) is not a standard multivariate distribution,
integrals with respect to pθ|X can be approximated in a number of
ways:

◮ numerical integration,

◮ analytic approximation,

◮ Monte Carlo/Importance sampling.

In high dimensions, such methods can prove inaccurate.
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Simulation-based inference: Inferences can be made from a large
(independent) sample from via pθ|X , rather than the analytic form
itself.

Using ideas from Monte Carlo, if we can obtain a sample of size M
from pθ|X , θ(1), . . . , θ(M), then we may obtain an approximation to
Eθ|X [h(θ)|x ] as follows:

Ê θ|X [h(θ)|x ] =
1

M

M∑

m=1

h(θ(m))
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If pθ|X is non-standard and high-dimensional, producing a large
sample from it may also prove problematic.

This problem has been successfully approached using

Markov Chain Monte Carlo

that is, it is possible to construct a aperiodic and irreducible
Markov chain on the parameter space with stationary distribution
pθ|X .

This method will be studied in detail later.


