Statistical Inference and Methods

David A. Stephens

Department of Mathematics Imperial College London
d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/~das01/

13th December 2005

Session 2: Methods of Inference

1/ 132

- Frequentist considerations
- Likelihood
- Quasi-likelihood
- Estimating Equations
- Generalized Method of Moments
- Bayesian

Session 2: Methods of Inference

Repeated observation of random variables $X_{1}, X_{2}, \ldots, X_{n}$ yields data $x_{1}, x_{2}, \ldots, x_{n}$.

Parametric Probability Model (pdf) $f_{X \mid \theta}(x ; \theta)$.
Objective is inference about parameter θ, a parameter in p dimensions in parameter space $\Theta \subseteq \mathbb{R}^{p}$.

We seek a procedure for producing estimators of θ that have desirable properties.

Estimators: An estimator, T_{n}, derived from a random sample of size n is a statistic, any function of the random variables to be observed X_{1}, \ldots, X_{n} :

$$
T_{n}=t\left(X_{1}, \ldots, X_{n}\right)
$$

An estimate, t_{n}, is a real value determined as the observed value of an estimator by data x_{1}, \ldots, x_{n}.

$$
t_{n}=t\left(x_{1}, \ldots, x_{n}\right)
$$

We will assess the worth of an estimator and the procedure used to produce it by inspecting its frequentist (empirical) properties assuming, for example, that the proposed model is correct.

Session 2: Methods of Inference

5/ 132

- Consistency: As $n \longrightarrow \infty$,

Weak consistency:

$$
T_{n} \xrightarrow{p} \theta_{0}
$$

Strong consistency:

$$
T_{n} \xrightarrow{\text { a.s. }} \theta_{0}
$$

Desirable Properties of Estimators:
Suppose the true model has $\theta=\theta_{0}$.

- Unbiasedness

$$
E_{X \mid \theta_{0}}\left[T_{n}\right]=\theta_{0}
$$

Asymptotic Unbiasedness

$$
\lim _{n \rightarrow \infty} E_{X \mid \theta_{0}}\left[T_{n}\right]=\theta_{0}
$$

Session 2: Methods of Inference

Laws of Large Numbers Under regularity conditions, for function g, as $n \longrightarrow \infty$,

Weak Law:

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \xrightarrow{p} E_{X \mid \theta_{0}}[g(X)]
$$

Strong Law:

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \xrightarrow{\text { a.s. }} \xrightarrow{p} E_{X \mid \theta_{0}}[g(X)]
$$

- For unbiased/asymptotically unbiased (but inconsistent) estimators, an estimator T_{n}^{\star} is efficient if it has smaller variance than all other unbiased estimators.

Efficiency

$$
\operatorname{Var}_{X \mid \theta_{0}}\left[T_{n}^{\star}\right] \leq \operatorname{Var}_{X \mid \theta_{0}}\left[T_{n}\right]
$$

Asymptotic Efficiency

$$
\lim _{n \rightarrow \infty} \operatorname{Var}_{X \mid \theta_{0}}\left[T_{n}^{\star}\right] \leq \lim _{n \rightarrow \infty} \operatorname{Var}_{X \mid \theta_{0}}\left[T_{n}\right]
$$

Session 2: Methods of Inference

EXAMPLE: Let $X_{1}, \ldots, X_{n} \sim N(\theta, 1)$.
Then the two estimators

$$
\begin{aligned}
& T_{1 n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X} \\
& T_{2 n}=T_{1 n}+\frac{100^{100}}{n}
\end{aligned}
$$

are both consistent and asymptotically unbiased for θ, with the same asymptotic variance.
However, their finite sample behaviours are somewhat different ...

Session 2: Methods of Inference

In summary, an estimator should have good frequentist properties

- it should recover the true value of the parameter as the sample size becomes infinite (consistency)
- if an estimator is inconsistent, it may be at least asymptotically unbiased, in which case the asymptotic distribution should have low variance (efficient)

However, consistency/asymptotic unbiasedness are not in themselves desirable ...

Session 2: Methods of Inference

Finite sample behaviour is also crucial. Could consider

- Sampling distribution of T_{n} for finite n, that is the empirical behaviour T_{n} over different random samples of size n
- an asymptotic approximation to this distribution suitable for large n
For example, we typically construct an Asymptotic Normal approximation to this distribution

$$
T_{n} \sim A N\left(\mu_{n}, \sigma_{n}^{2}\right)
$$

for suitable values of μ_{n} and σ_{n}.

The Standard error of an estimator T_{n} of parameter θ is

$$
\text { s.e. }\left(T_{n} ; \theta\right)=\sqrt{\operatorname{Var}_{f_{X \mid \theta}}\left[T_{n}\right]}=s_{e}(\theta)
$$

for some function s_{e}.
The estimated standard error is

$$
\text { e.s.e }\left(T_{n}\right)=s_{e}\left(\widehat{\theta}_{n}\right)
$$

Likelihood Methods

We seek a general method for producing estimators/estimates from data under a presumed model that utilizes the observed information in the most effective fashion.

Session 2: Methods of Inference

The likelihood function:

$$
L(\theta ; x)=f_{X \mid \theta}\left(x_{1}, \ldots, x_{n} ; \theta\right)
$$

and under independence

$$
L(\theta ; x)=\prod_{i=1}^{n} f_{X \mid \theta}\left(x_{i} ; \theta\right)
$$

The log-likelihood function:

$$
I(\theta ; x)=\sum_{i=1}^{n} \log f_{X \mid \theta}\left(x_{i} ; \theta\right)
$$

Session 2: Methods of Inference
14/ 132

Objective: Inference about θ via L or I

Assertion:

The likelihood contains all relevant information about parameter θ represented by the data.

Maximum Likelihood: Estimate θ by $\widehat{\theta}_{n}=t\left(x_{1}, \ldots, x_{n}\right)$

$$
\widehat{\theta}_{n}\left(x_{1}, \ldots, x_{n}\right)=\arg \max _{\theta \in \Theta} I(\theta ; x)
$$

with corresponding estimator

$$
\widehat{\theta}_{n}\left(X_{1}, \ldots, X_{n}\right)
$$

Maximum likelihood estimate/estimator (mle) $\widehat{\theta}_{n}$ is often computed as a zero-crossing of the first derivative of $I(\theta, x)$.

Session 2: Methods of Inference

Hessian Matrix:

$$
H(\theta ; x)=[\ddot{l}(\theta ; x)]_{i j}=\frac{\partial^{2} l}{\partial \theta_{i} \theta_{j}}
$$

be the $p \times p$ matrix of second partial derivatives.
Define

$$
\Psi_{\theta}^{A}(X)=-\ddot{l}(\theta ; X)
$$

Consider also

$$
\Psi_{\theta}^{B}(X)=S_{\theta}(X) S_{\theta}(X)^{\top}
$$

Session 2: Methods of Inference

Let

$$
i(\theta ; x)=\nabla I(\theta ; x)=\left[\frac{\partial I}{\partial \theta_{1}}, \ldots, \frac{\partial I}{\partial \theta_{p}}\right]^{\top}
$$

be the vector of first partial derivatives. Then $\hat{\theta}_{n}$ solves

$$
i(\theta ; x)=0
$$

Score function:

$$
S_{\theta}(X)=\dot{I}(\theta ; X)
$$

Note: in many models

$$
E_{X \mid \theta}\left[S_{\theta}(X)\right]=0
$$

Session 2: Methods of Inference

Then for many models

$$
E_{X \mid \theta}\left[\Psi_{\theta}^{A}(X)\right]=E_{X \mid \theta}\left[\Psi_{\theta}^{B}(X)\right]=n \mathcal{I}(\theta)
$$

where $\mathcal{I}(\theta)$ is the unit Fisher Information for the model.
$\mathcal{I}(\theta)$ is a positive definite/non-singular and symmetric matrix. Let

$$
\mathcal{J}(\theta)=\mathcal{I}(\theta)^{-1}
$$

We can consider sample-based versions of these quantities Observed Score:

$$
S_{\theta}(x)=\dot{i}(\theta ; x)
$$

Observed Unit Information:

$$
I_{n}^{A}(n, \theta)=\frac{1}{n} \sum_{i=1}^{n} \Psi_{\theta}^{A}\left(x_{i}\right)
$$

or

$$
I_{n}^{B}(n, \theta)=\frac{1}{n} \sum_{i=1}^{n} S_{\theta}\left(x_{i}\right) S_{\theta}\left(x_{i}\right)^{\top}
$$

Session 2: Methods of Inference

Cramer-Rao Efficiency Bound

An efficiency bound for unbiased estimators: if T_{n} is unbiased, then under regularity conditions,

$$
\operatorname{Var}_{X \mid \theta}\left[T_{n}\right] \geq\left[E_{X \mid \theta}\left[\Psi_{\theta}^{A}(X)\right]\right]^{-1}=\left[E_{X \mid \theta}\left[\Psi_{\theta}^{B}(X)\right]\right]^{-1}
$$

This is the Cramer-Rao Lower Bound.

Session 2: Methods of Inference

Note: by the Laws of Large Numbers, as $n \longrightarrow \infty$,

$$
I_{n}^{A}\left(n, \theta_{0}\right) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right) \quad \quad I_{n}^{B}\left(n, \theta_{0}\right) \xrightarrow{p} \mathcal{I}\left(\theta_{0}\right)
$$

Session 2: Methods of Inference

Properties of mles

Under regularity conditions, the mle is

- consistent
- asymptotically unbiased
- asymptotically efficient, with asymptotic variance $\mathcal{J}\left(\theta_{0}\right)$ equal to the Cramer-Rao lower bound.
- invariant: if $\widehat{\theta}_{n}$ estimates θ, and $\phi=g(\theta)$, then $\widehat{\phi}_{n}=g\left(\widehat{\theta}_{n}\right)$.

Asymptotic Normality

Using the CLT,

$$
\sqrt{n}\left(\widehat{\theta}_{n}-\theta_{0}\right) \xrightarrow{\mathfrak{L}} N\left(0, \mathcal{J}\left(\theta_{0}\right)\right)
$$

or

$$
\widehat{\theta}_{n} \sim A N\left(\theta_{0}, n^{-1} \mathcal{J}\left(\theta_{0}\right)\right)
$$

i.e. $\widehat{\theta}_{n}$ converges to θ_{0} at rate \sqrt{n}.

Session 2: Methods of Inference

There are five crucial components to a hypothesis test, namely

- Test Statistic, T_{n}
- Null Distribution, distribution of T_{n} under H_{0}.
- Critical Region, \mathcal{R}, and Critical Value(s) $\left(C_{R_{1}}, C_{R_{2}}\right)$

$$
T_{n} \in \mathcal{R} \quad \Longrightarrow \quad \text { Reject } H_{0}
$$

- Significance Level, α,

$$
\alpha=P\left[T_{n} \in \mathcal{R} \mid H_{0}\right] .
$$

- P-Value, p,

$$
p=P\left[\left|T_{n}\right| \geq|t(x)| \mid H_{0}\right]
$$

Hypothesis Testing \& Confidence Intervals

We seek a general method for testing a specific hypothesis about parameters in probability models.

$$
\begin{aligned}
& H_{0}: \theta=c_{0} \\
& H_{1}:
\end{aligned}: \theta \neq c_{0}
$$

Session 2: Methods of Inference

The Likelihood Ratio Test

The Likelihood Ratio Test statistic for testing H_{0} against H_{1} is

$$
T_{n}=\frac{\sup _{\theta \in \Theta_{1}} f_{X \mid \theta}(X ; \theta)}{\sup _{\theta \in \Theta_{0}} f_{X \mid \theta}(X ; \theta)}
$$

where H_{0} is rejected if T_{n} is too large, that is, if $\mathrm{P}\left[T_{n} \geq k \mid H_{0}\right]=\alpha$.
If H_{0} imposes q independent constraints on H_{1}, then, as $n \longrightarrow \infty$

$$
\begin{equation*}
2 \log T_{n} \stackrel{\mathcal{A}}{\sim} \chi_{q}^{2} \tag{1}
\end{equation*}
$$

The Rao/Score/Lagrange Multiplier Test
The Rao/Score/Lagrange Multiplier statistic, R_{n}, for testing

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}:
\end{aligned}: \theta \neq \theta_{0}
$$

is defined by

$$
\begin{equation*}
R_{n}=Z_{n}^{\top}\left[\mathcal{I}\left(\theta_{0}\right)\right]^{-1} Z_{n} \tag{2}
\end{equation*}
$$

where

$$
Z_{n}=\frac{1}{\sqrt{n}} i\left(X ; \theta_{0}\right)
$$

Session 2: Methods of Inference

Interpretation and Explanation: The score test uses these results; if H_{0} is true,

$$
S_{\theta_{0}}(X) \stackrel{\mathcal{A}}{\sim} N\left(0, n \mathcal{I}\left(\theta_{0}\right)\right)
$$

so that the standardized score

$$
V_{n}=L_{\theta_{0}}^{-1} S_{\theta_{0}}(X) \stackrel{\mathcal{A}}{\sim} N\left(0, \mathbf{I}_{p}\right)
$$

where \mathbf{I}_{p} is the $p \times p$ identity matrix, and where matrix $A(\theta)$ is given by

$$
L_{\theta_{0}} L_{\theta_{0}}^{\top}=n \mathcal{I}\left(\theta_{0}\right)
$$

Session 2: Methods of Inference

Hence, by the usual normal distribution theory

$$
R_{n}=V_{n}^{\top} V_{n}=Z_{n}^{\top}\left\{\mathcal{I}\left(\theta_{0}\right)\right\}^{-1} Z_{n} \stackrel{\mathcal{A}}{\sim} \chi_{p}^{2}
$$

so that observed test statistic

$$
r_{n}=z_{n}^{\top}\left\{\mathcal{I}\left(\theta_{0}\right)\right\}^{-1} z_{n} \quad \text { where } z_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} S_{\theta_{0}}\left(x_{i}\right)
$$

should be an observation from a χ_{p}^{2} distribution.

Session 2: Methods of Inference

Extension: It is legitimate, if required, to replace $\mathcal{I}\left(\theta_{0}\right)$ by a suitable estimate $\hat{I}_{n}\left(\tilde{\theta}_{n}\right)$. For example

$$
\hat{I}_{n}\left(\tilde{\theta}_{n}\right)=\left\{\begin{array}{l}
\mathcal{I}\left(\tilde{\theta}_{n}\right) \tag{3}\\
I_{n}^{A}\left(n, \tilde{\theta}_{n}\right) \\
I_{n}^{B}\left(n, \tilde{\theta}_{n}\right)
\end{array}\right.
$$

Session 2: Methods of Inference

Interpretation and Explanation: the logic of the Wald test depends on the asymptotic Normal distribution of the score equation derived estimates

$$
\sqrt{n}\left(\tilde{\theta}_{n}-\theta_{0}\right) \xrightarrow{d} N\left(0, \mathcal{I}\left(\theta_{0}\right)^{-1}\right)
$$

so that

$$
\tilde{\theta}_{n} \stackrel{\mathcal{A}}{\sim} N\left(\theta_{0}, \mathcal{I}\left(\theta_{0}\right)^{-1}\right)
$$

Again, estimates of the Fisher Information such as those in (3) can be substituted for $I\left(\theta_{0}\right)$ in (4).

The Wald Test

The Wald Test statistic, W_{n}, for testing H_{0} against $H_{1}: \theta \neq \theta_{0}$ is defined by

$$
\begin{equation*}
W_{n}=\sqrt{n}\left(\tilde{\theta}_{n}-\theta_{0}\right)^{\top}\left[\hat{I}_{n}\left(\tilde{\theta}_{n}\right)\right] \sqrt{n}\left(\tilde{\theta}_{n}-\theta_{0}\right) \tag{4}
\end{equation*}
$$

Then, for large n, if H_{0} is true,

$$
W_{n} \stackrel{\mathcal{A}}{\sim} \chi_{p}^{2}
$$

and H_{0} is rejected if W_{n} is too large, that is, if $W_{n} \geq C$, and where $\mathrm{P}\left[W_{n} \geq C \mid H_{0}\right]=\alpha$ for significance level α.

Session 2: Methods of Inference

Extension to tests for components of θ.

The theory above concerns tests for the whole parameter vector θ.
Often it is of interest to consider components of θ, that is, if $\theta=\left(\theta_{1}, \theta_{2}\right)$, we might wish to test

$$
\begin{aligned}
& H_{0}: \theta_{1}=\theta_{10}, \text { with } \theta_{2} \text { unspecified } \\
& H_{1}: \theta_{1} \neq \theta_{10}, \text { with } \theta_{2} \text { unspecified }
\end{aligned}
$$

The Rao Score and Wald tests can be developed to allow for testing in this slightly different context

Session 2: Methods of Inference

Suppose that θ_{1} has dimension m and θ_{2} has dimension $p-m$. Let the Fisher information matrix $\mathcal{I}(\theta)$ and its inverse be partitioned

$$
\begin{gathered}
\mathcal{I}(\theta)=\left[\begin{array}{ll}
l_{11} & l_{12} \\
l_{21} & I_{22}
\end{array}\right] \\
\mathcal{J}(\theta)=\left[\begin{array}{cc}
{\left[l_{112} 2\right]^{-1}} & -\left[l_{11.2}\right]^{-1} I_{12}\left[l_{22}\right]^{-1} \\
-\left[l_{22.1}\right]^{-1} l_{21}\left[l_{11}\right]^{-1} & {\left[l_{22.1}\right]^{-1}}
\end{array}\right]
\end{gathered}
$$

be a partition of the information matrix, where

$$
\begin{aligned}
& I_{11.2}=I_{11}-l_{12}\left[l_{22}\right]^{-1} l_{21} \\
& I_{22.1}=I_{22}-I_{21}\left[I_{11}\right]^{-1} l_{12}
\end{aligned}
$$

and all quantities depend on θ.

Session 2: Methods of Inference

- The Wald statistic is given by

$$
W_{n}=\sqrt{n}\left(\tilde{\theta}_{n 1}-\theta_{10}\right)^{\top}\left[\hat{I}_{n}^{(11.2)}\left(\tilde{\theta}_{n}\right)\right] \sqrt{n}\left(\tilde{\theta}_{n 1}-\theta_{10}\right) \stackrel{\mathcal{A}}{\sim} \chi_{m}^{2}
$$

where $\tilde{\theta}_{n 1}$ is the vector component of $\tilde{\theta}_{n}$ corresponding to θ_{1} under H_{1}, and $\hat{I}_{n}^{(11.2)}\left(\tilde{\theta}_{n}\right)$ is the estimated version of $I_{11.2}$ (using the sample data, under H_{1}) evaluated at $\tilde{\theta}_{n}$, obtained using any of the estimates in (3).

Session 2: Methods of Inference

36/ 132

- The Rao/score/LM statistic is given by

$$
R_{n}=Z_{n 0}^{\top}\left[\hat{I}_{n}\left(\tilde{\theta}_{n}^{(0)}\right)\right]^{-1} Z_{n 0} \stackrel{\mathcal{A}}{\sim} \chi_{m}^{2}
$$

where $\tilde{\theta}_{n}^{(0)}$ is the estimate of θ under H_{0} and $\hat{I}_{n}\left(\tilde{\theta}_{n}^{(0)}\right)$ is the estimated Fisher information I_{1}, evaluated at $\tilde{\theta}_{n}^{(0)}$, obtained using any of the estimates in (3).

Session 2: Methods of Inference

Confidence Intervals

A $100(1-\gamma) \%$ confidence interval $(\mathrm{CI}) \mathcal{C}(X)$ for parameter θ is an interval such that

$$
P[\theta \in \mathcal{C}(X)]=1-\gamma
$$

under assumptions made about $X=\left(X_{1}, X_{2}, \ldots, n\right)$ from model $f_{X \mid \theta}$. In most cases this corresponds to an interval $\mathcal{C}(X) \equiv(L(X), U(X))$ such that

$$
P[L(X) \leq \theta \leq U(X)]=1-\gamma
$$

under $f_{X \mid \theta}$.
Notice that $\mathcal{C}(X)$ is a random interval that can be estimated for real data x by $\mathcal{C}(x)$.

Session 2: Methods of Inference

Example: If $X_{1}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$, then

$$
\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1)
$$

so that, under this model, if $\gamma=0.05$,

$$
P\left[-1.96 \leq \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \leq 1.96\right]=1-\gamma
$$

and a $100(1-\gamma) \% \mathrm{Cl}$ is given by

$$
L(X)=\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \quad U(X)=\bar{X}+1.96 \frac{\sigma}{\sqrt{n}}
$$

Session 2: Methods of Inference

The coverage probability of any random interval $\mathcal{C}(X)$ is the probability

$$
P[\theta \in \mathcal{C}(X)]
$$

computed under the true model $f_{X \mid \theta}$.
Thus the coverage probability for a true $100(1-\gamma) \% \mathrm{Cl}$ is $(1-\gamma)$.
In complicated estimation problems, confidence intervals and coverage probabilities are typically verified using simulation.

Session 2: Methods of Inference

Note: Connection with Testing
Under $H_{0}: \theta=\theta_{0}$, for test statistic T_{n} and Critical Region \mathcal{R},

$$
\alpha=P\left[T_{n} \in \mathcal{R} \mid H_{0}\right] .
$$

Typically, T_{n} is a pivotal quantity whose form depends on θ, but whose distribution does not.
It can be shown that the $100(1-\gamma) \% \mathrm{Cl}$ is the range of values of θ_{0} that can be hypothesized under H_{0} such that the hypothesis is not rejected at significance level γ.

Session 2: Methods of Inference

Quasi-Likelihood

Quasi-likelihood (QL) methods were introduced to extend the models that can be fitted to data.

The origin of QL methods lie in the attempts to extend the normal linear model to non-normal data, that is, to extend to

Generalized Linear Models

We again begin with a parametric probability model, $f_{Y \mid \theta}$.

Session 2: Methods of Inference

Exponential Family of Distributions: Suppose

$$
f_{Y \mid \xi}(y ; \xi)=\exp \left\{\frac{a_{\xi}(\xi) b_{\xi}(y)-c_{\xi}(\xi)}{\phi}+d(y, \phi)\right\}
$$

or equivalently, in canonical form, writing $\theta=a_{\xi}(\xi)$, we have

$$
f_{Y \mid \theta}(y ; \theta)=\exp \left\{\frac{\theta b(y)-c(\theta)}{\phi}+d(y, \phi)\right\}
$$

Without loss of generality, we assume $b(y)=y$. Then

$$
E_{Y \mid \theta}[Y]=\dot{c}(\theta)=\mu \quad \operatorname{Var}_{Y \mid \theta}[Y]=\phi \ddot{c}(\theta)=\phi V(\mu),
$$

say, that is, expectation and variance are functionally related.

Session 2: Methods of Inference

A Generalized Linear Model is a model such that the expectation is modelled as a function of predictors X, that is

$$
\mu=\dot{c}(\theta)=g^{-1}(X \beta)
$$

for some link function, g, a monotone function onto \mathbb{R}. The canonical link is the link such that

$$
g(\dot{c}(\theta))=\theta
$$

The term $X \beta$ is the linear predictor.

Session 2: Methods of Inference

A slight generalization allows different data points to be weighted by potentially different weights, w_{i}, that is, the likelihood becomes

$$
f_{Y \mid \theta}\left(y_{i} ; \theta\right)=\exp \left\{w_{i} \frac{\theta y_{i}-c(\theta)}{\phi}+d\left(y_{i}, \phi / w_{i}\right)\right\}
$$

so that w_{i} is a known constant that changes the scale of datum i. Then

$$
E_{Y \mid \theta}[Y]=\mu \quad \operatorname{Var}_{Y \mid \theta}[Y]=\phi V(\mu) / w .
$$

Session 2: Methods of Inference

For an exponential family GLM, the log-likelihood in the canonical parameterization is

$$
I(\beta ; y)=\text { constant }+\sum_{i=1}^{n}\left\{w_{i} \frac{\theta_{i} y_{i}-c\left(\theta_{i}\right)}{\phi}+d\left(y_{i}, \phi / w_{i}\right)\right\}
$$

Partial differentiation with respect to β_{j} yields a score equation:

$$
\frac{\partial I(\beta ; y)}{\partial \beta_{j}}=\frac{1}{\phi} \sum_{i=1}^{n} w_{i} \frac{\partial \theta_{i}}{\partial \beta_{j}}\left(y_{i}-\dot{c}\left(\theta_{i}\right)\right)=\frac{1}{\phi} \sum_{i=1}^{n} w_{i} \frac{\partial \theta_{i}}{\partial \beta_{j}}\left(y_{i}-\mu_{i}\right)
$$

But, with link function g, we have

$$
g\left(\mu_{i}\right)=g\left(\dot{c}\left(\theta_{i}\right)\right)=X_{i} \beta=\eta_{i}
$$

thus

$$
\frac{\partial \eta_{i}}{\partial \beta_{j}}=\frac{\partial g\left(\dot{c}\left(\theta_{i}\right)\right)}{\partial \beta_{j}}=\dot{g}\left(\dot{c}\left(\theta_{i}\right)\right) \ddot{c}\left(\theta_{i}\right) \frac{\partial \theta_{i}}{\partial \beta_{j}}
$$

and hence, as $\ddot{c}\left(\theta_{i}\right)=V\left(\mu_{i}\right)$,

$$
\frac{\partial \eta_{i}}{\partial \beta_{j}}=\dot{g}\left(\mu_{i}\right) V\left(\mu_{i}\right) \frac{\partial \theta_{i}}{\partial \beta_{j}}
$$

Session 2: Methods of Inference

If the canonical link function is used

$$
\theta_{i}=X_{i} \beta \quad \Longrightarrow \quad \frac{\partial \theta_{i}}{\partial \beta_{j}}=X_{i j}
$$

and the score equations become

$$
\frac{\partial I(\beta ; y)}{\partial \beta_{j}}=\sum_{i=1}^{n} w_{i}\left(y_{i}-\mu_{i}\right) X_{i j}=0 \quad j=1, \ldots, p
$$

But

$$
\frac{\partial \eta_{i}}{\partial \beta_{j}}=X_{i j}
$$

Thus we have for the $j^{\text {th }}(j=1, \ldots, p)$ score equation

$$
\frac{\partial I(\beta ; y)}{\partial \beta_{j}}=\sum_{i=1}^{n} \frac{w_{i}}{\phi} \frac{\left(y_{i}-\mu_{i}\right) X_{i j}}{\dot{g}\left(\mu_{i}\right) V\left(\mu_{i}\right)}=0
$$

where, recall,

$$
\mu_{i}=g^{-1}\left(X_{i} \beta\right)
$$

Estimation of $\left(\beta_{1}, \ldots, \beta_{p}\right)$ can be achieved by solution of this
system of equations. Note that ϕ can be omitted from this system as $\phi>0$ by assumption.

Session 2: Methods of Inference

In this model, the assumptions about the specific form of $f_{Y \mid \theta}$ allowed the construction of the score equations; for different probability models, the different components take different forms:

- $f_{Y \mid \theta}(y ; \theta) \equiv \operatorname{Poisson}(\lambda)$
- canonical parameter $\theta=\log \lambda$,
- canonical link $g(t)=\log (t)$,
- $\mu=\lambda=\exp (\theta)$,
- $V(\mu)=\lambda=\mu$ (so that $V(t)=t$).
- $w_{i}=1$,
- $\phi=1$.
- $f_{Y \mid \theta}(y ; \theta) \equiv \operatorname{Binomial}(n, \xi)$
- canonical parameter $\theta=\log (\xi /(1-\xi))$,
- canonical link $g(t)=\log (t /(1-t))$,
- $\mu=\xi=\exp (\theta) /(1+\exp (\theta))$,
- $V(\mu)=\xi(1-\xi)=\mu(1-\mu)$ (so that $V(t)=t(1-t)$).
- $w_{i}=n_{i}$,
- $\phi=1$.

Note: y_{i} presumed to be modelled in proportionate form, that is, if $Z \sim \operatorname{Binomial}(n, \xi)$, we model $Y=Z / n$.

Session 2: Methods of Inference

53/ 132

Quasi-Likelihood: The score equations are key in the estimation, and are derived directly from the probabilistic assumptions:

$$
\sum_{i=1}^{n} w_{i} \frac{\left(y_{i}-\mu_{i}\right) X_{i j}}{\dot{g}\left(\mu_{i}\right) V\left(\mu_{i}\right)}=0 \quad j=1, \ldots, p
$$

However, these equations can be used as the basis for estimation even if they are not motivated by probabilistic modelling.

We can propose forms for $V\left(\mu_{i}\right)$ directly without reference to any specific model. This is the basis of quasi-likelihood methods.

- $f_{Y \mid \theta}(y ; \theta) \equiv \operatorname{Normal}\left(\xi, \sigma^{2}\right)$
- canonical parameter $\theta=\xi$,
- canonical link $g(t)=1$,
- $\mu=\xi$,
- $V(\mu)=1$ (so that $V(t)=1$).
- $w_{i}=1$,
- $\phi=\sigma^{2}$.

Note: here mean and variance are modelled orthogonally.

Session 2: Methods of Inference

Examples:

- $V\left(\mu_{i}\right)=\mu_{i}^{2}$, the constant coefficient of variation model where

$$
\frac{E\left[Y_{i}\right]}{\sqrt{\operatorname{Var}\left[Y_{i}\right]}}=\frac{\mu_{i}}{\phi^{1 / 2} \mu_{i}}=\frac{1}{\phi^{1 / 2}}
$$

- $V\left(\mu_{i}\right)=\phi_{i} \mu_{i}\left(1-\mu_{i}\right)$ (an overdispersed binomial model)
- $V\left(\mu_{i}\right)=\phi_{i} \mu_{i}$ (an overdispersed Poisson model)
- $V\left(\mu_{i}\right)=\phi_{i} \mu_{i}^{2}$ (an overdispersed Exponential model).

Session 2: Methods of Inference

Estimating Equations

The quasi-likelihood approach is a special case of a general approach to estimation based on estimating equations.

An estimating function is a function

$$
\begin{equation*}
\mathbf{G}(\boldsymbol{\theta})=\sum_{i=1}^{n} \mathbf{G}\left(\boldsymbol{\theta}, Y_{i}\right)=\sum_{i=1}^{n} \mathbf{G}_{i}(\boldsymbol{\theta}) \tag{5}
\end{equation*}
$$

of the same dimension as $\boldsymbol{\theta}$ for which

$$
\begin{equation*}
E[\mathbf{G}(\theta)]=\mathbf{0} . \tag{6}
\end{equation*}
$$

Session 2: Methods of Inference

For inference, the frequentist properties of the estimating function are derived and are then transferred to the resultant estimator. The estimating function may be constructed to be a simple function of the data, while the estimator of the parameter that solves (7) will often be unavailable in closed form.

The estimating function (5) is a sum of random variables which provides the opportunity to evaluate its asymptotic properties via a central limit theorem. The art of constructing estimating functions is to make them dependent on distribution-free quantities, for example, the population moments of the data.

The following theorem that forms the basis for asymptotic inference.

The estimating function $\mathbf{G}(\boldsymbol{\theta})$ is a random variable because it is a function of Y. The corresponding estimating equation that defines the estimator $\widehat{\boldsymbol{\theta}}$ has the form

$$
\begin{equation*}
\mathbf{G}(\widehat{\boldsymbol{\theta}})=\sum_{i=1}^{n} \mathbf{G}_{i}(\widehat{\boldsymbol{\theta}})=\mathbf{0} \tag{7}
\end{equation*}
$$

Session 2: Methods of Inference

Theorem: Estimator $\widehat{\boldsymbol{\theta}}_{n}$ which is the solution to

$$
\mathbf{G}\left(\widehat{\boldsymbol{\theta}}_{n}\right)=\sum_{i=1}^{n} \mathbf{G}_{i}\left(\widehat{\boldsymbol{\theta}}_{n}\right)=\mathbf{0}
$$

has asymptotic distribution

$$
\hat{\boldsymbol{\theta}}_{n} \stackrel{\mathcal{A}}{\sim} N\left(\boldsymbol{\theta}, \mathbf{A}^{-1} \mathbf{B A}^{\top-1}\right)
$$

where

$$
\begin{aligned}
\mathbf{A} & =\mathbf{A}_{n}(\boldsymbol{\theta})=E\left[\frac{\partial \mathbf{G}}{\partial \boldsymbol{\theta}^{\top}}\right]=\sum_{i=1}^{n} E\left[\frac{\partial \mathbf{G}_{i}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{\top}}\right] \\
\mathbf{B} & =\mathbf{B}_{n}(\boldsymbol{\theta})=\operatorname{Cov}(\mathbf{G})=\sum_{i=1}^{n} \operatorname{Cov}\left\{\mathbf{G}_{i}(\boldsymbol{\theta})\right\} .
\end{aligned}
$$

Session 2: Methods of Inference

The form of the covariance of the estimator here, the covariance of the estimating function, flanked by the inverse of the Jacobian of the transformation from the estimating function to the parameter.

In practice, $\mathbf{A}=\mathbf{A}_{n}(\boldsymbol{\theta})$ and $\mathbf{B}=\mathbf{B}_{n}(\boldsymbol{\theta})$ are replaced by
$\widehat{\mathbf{A}}=\mathbf{A}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)$ and $\widehat{\mathbf{B}}=\mathbf{B}_{n}\left(\widehat{\boldsymbol{\theta}}_{n}\right)$, respectively. In this case, we have

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}_{n} \stackrel{\mathcal{A}}{\sim} N_{p}\left(\boldsymbol{\theta}, \widehat{\mathbf{A}}^{-1} \widehat{\mathbf{B}} \widehat{\mathbf{A}}^{T^{-1}}\right), \tag{8}
\end{equation*}
$$

since $\widehat{\mathbf{A}} \xrightarrow{p} \mathbf{A}$ and $\widehat{\mathbf{B}} \xrightarrow{p} \mathbf{B}$.

Session 2: Methods of Inference

61/132

Sandwich Estimation

A general method of avoiding stringent modelling conditions when the variance of an estimator is calculated is provided by sandwich estimation.

The basic idea is to estimate the variance of the data empirically with minimum modelling assumptions, and to incorporate this in the estimation of the variance of an estimator.

Session 2: Methods of Inference

The accuracy of the asymptotic approximation to the sampling distribution of the estimator is dependent on the parameterization adopted. A rule of thumb is to obtain the confidence interval on a reparameterization which takes the parameter onto the real line (for example, the logistic transform for a probability, or the logarithmic transform for a dispersion parameter), and then to transform to the more interpretable scale.

Estimators for functions of interest, $\phi=g(\boldsymbol{\theta})$, may be obtained via $\widehat{\phi}=g(\widehat{\boldsymbol{\theta}})$, and the asymptotic distribution may be found using the delta method.

Session 2: Methods of Inference

62/ 132

We have seen that when the estimating function corresponds to a score equation derived from a probability model, then under the model

$$
\mathcal{I}=\mathbf{A}=-\mathbf{B}
$$

so that

$$
\operatorname{Var}(\widehat{\boldsymbol{\theta}})=\mathbf{A}(\boldsymbol{\theta})^{-1} \mathbf{B}(\boldsymbol{\theta}) \mathbf{A}(\boldsymbol{\theta})^{\top-1}=\mathcal{I}(\boldsymbol{\theta})^{-1}
$$

If the model is not correct then this equality does not hold, and the variance estimator will be incorrect.

Session 2: Methods of Inference

An alternative is to evaluate the variance empirically via

$$
\widehat{\mathbf{A}}=\sum_{i=1}^{n} \frac{\partial}{\partial \boldsymbol{\theta}} \mathbf{G}\left(\widehat{\boldsymbol{\theta}}, Y_{i}\right),
$$

and

$$
\widehat{\mathbf{B}}=\sum_{i=1}^{n} \mathbf{G}\left(\widehat{\boldsymbol{\theta}}, Y_{i}\right) \mathbf{G}\left(\widehat{\boldsymbol{\theta}}, Y_{i}\right)^{\top} .
$$

This method is general and can be applied to any estimating function, not just those arising from a score equation.

Session 2: Methods of Inference

However, a simple "sandwich" estimator of the variance is given by

$$
\operatorname{Var}_{s}(\widehat{\boldsymbol{\beta}})=\left(\mathbf{D}^{\top} \mathbf{V}^{-1} \mathbf{D}\right)^{-1} \mathbf{D}^{\top} \mathbf{V}^{-1} \mathbf{R}^{\top} \mathbf{R} \mathbf{V}^{-1} \mathbf{D}\left(\mathbf{D}^{\top} \mathbf{V}^{-1} \mathbf{D}\right)^{-1},
$$

where $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)^{\top}$ is the $n \times 1$ vector with $R_{i}=Y_{i}-\mu_{i}(\widehat{\boldsymbol{\beta}})$.
This estimator is consistent for the variance of $\widehat{\boldsymbol{\beta}}$, under correct specification of the mean, and with uncorrelated data. There is finite sample bias in R_{i} as an estimate of $Y_{i}-\mu_{i}(\boldsymbol{\beta})$ and versions that adjust for the estimation of the parameters $\boldsymbol{\beta}$ are also available

Session 2: Methods of Inference

Suppose we assume $E[\mathbf{Y}]=\boldsymbol{\mu}$ and $\operatorname{Var}(\mathbf{Y})=\phi \mathbf{V}$ with
$\operatorname{Var}\left(Y_{i}\right)=\phi V\left(\mu_{i}\right)$, and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0, i, j=1, \ldots, n, i \neq j$, as a working covariance model.

Under this specification it is natural to take the quasi-likelihood as an estimating function, in which case

$$
\operatorname{Cov}\{U(\boldsymbol{\beta})\}=\mathbf{D}^{\top} \mathbf{V}^{-1} \operatorname{Cov}(\mathbf{Y}) \mathbf{V}^{-1} \mathbf{D} / \phi^{2}
$$

to give

$$
\operatorname{Var}_{s}(\widehat{\boldsymbol{\beta}})=\left(\mathbf{D}^{\top} \mathbf{V}^{-1} \mathbf{D}\right)^{-1} \mathbf{D}^{\top} \mathbf{V}^{-1} \operatorname{Cov}(\mathbf{Y}) \mathbf{V}^{-1} \mathbf{D}\left(\mathbf{D}^{\top} \mathbf{V}^{-1} \mathbf{D}\right)^{-1}
$$

and so the appropriate variance is obtained by substituting in the correct form for $\operatorname{Cov}(\mathbf{Y})$ which is, of course, unknown.

Session 2: Methods of Inference

The great advantage of sandwich estimation is that it provides a consistent estimator of the variance in very broad situations. There are two things to bear in mind

- For small sample sizes, the sandwich estimator may be highly unstable, and in terms of mean squared error model-based estimators may be preferable for small to medium sized n; empirical is a better description of the estimator than robust.
- If the model is correct, then the model-based estimators are more efficient.

Generalized Estimating Equations

The models above focus on independent data only. However, the methods can be extended to the dependent data cases.

Recall the Normal Linear (regression) model

$$
Y=X \beta+\epsilon
$$

where

- Y is $n \times 1$,
- X is $n \times p$,
- β is $p \times 1$,
- ϵ is $n \times 1$,
and $\epsilon \sim N\left(0, \sigma^{2} \mathbf{I}_{n}\right)$ for identically distributed errors.

Session 2: Methods of Inference

In this model, we have the ML (and GLS) estimates (conditional on Σ) given by

$$
\widehat{\beta}_{n}=\left(X^{\top} \Sigma^{-1} X\right)^{-1} X^{\top} \Sigma^{-1} y
$$

and it follows that $\widehat{\beta}_{n}$ is unbiased, and Normally distributed with variance

$$
\left(X^{\top} \Sigma^{-1} X\right)^{-1}
$$

Session 2: Methods of Inference

More generally, we can assume $\epsilon \sim N(0, \Sigma)$ and model the observable quantities as dependent

- repeated observations on a series of N experimental units that are modelled independently, so that Σ is block diagonal:

$$
\Sigma=\left[\begin{array}{cccc}
\Sigma_{1} & 0 & \cdots & 0 \\
0 & \Sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \Sigma_{N}
\end{array}\right]
$$

- correlated data from one stochastic process

Session 2: Methods of Inference

70/ 132

Typically Σ is not known, and possibly contains unknown parameters, α. It can be estimated in a number of ways

- ML (distribution-based)
- REML (distribution-based)
- Robust (sandwich) estimation (model-free)

Session 2: Methods of Inference

An estimating equation approach can be used to view this form of estimation in a distribution-free context. We consider the
Generalized Estimating Equation given by

$$
\mathbf{G}(\beta)=X^{\top} W^{-1}(y-X \beta)
$$

for symmetric, non-singular matrix W (that is, a matrix version of the independent case given above). Then $E[\mathbf{G}(\beta)]=0$, and

$$
\widehat{\beta}_{W}=\left(X^{\top} W^{-1} X\right)^{-1} X^{\top} W^{-1} y
$$

is unbiased with

$$
\operatorname{Var}\left(\widehat{\beta}_{W}\right)=\left(X^{\top} W^{-1} X\right)^{-1} X^{\top} W^{-1} \Sigma W^{-1} X\left(X^{\top} W^{-1} X\right)^{-1}
$$

Session 2: Methods of Inference

We focus on the repeated measures case, where independent units $i=1, \ldots, N$ has n_{1}, \ldots, n_{N} observations.

Suppose that $\Sigma_{i}=W_{i}$, a known constant "working" covariance matrix. Then we have

$$
\widehat{\beta}_{W}=\left(\sum_{i=1}^{N} X_{i}^{\top} W_{i}^{-1} X_{i}\right)^{-1}\left(\sum_{i=1}^{N} X_{i}^{\top} W_{i}^{-1} y_{i}\right)
$$

with

$$
\operatorname{Var}\left(\widehat{\beta}_{W}\right)=\left(X^{\top} W^{-1} X\right)^{-1}=\left(\sum_{i=1}^{N} X_{i}^{\top} W_{i}^{-1} X_{i}\right)^{-1}
$$

Could choose

- $W=\Sigma$, so that

$$
\operatorname{Var}\left(\widehat{\beta}_{W}\right)=\left(X^{\top} \Sigma^{-1} X\right)^{-1}
$$

- $W=\mathbf{I}$, so that

$$
\operatorname{Var}\left(\widehat{\beta}_{W}\right)=\left(X^{\top} X\right)^{-1} X^{\top} \Sigma X\left(X^{\top} X\right)^{-1}
$$

We still need to estimate $\Sigma=\Sigma(\alpha)$.

Session 2: Methods of Inference

If $W=W(\alpha, \beta)$, then the corresponding estimating function is

$$
\mathbf{G}(\alpha, \beta)=\sum_{i=1}^{N} X_{i}^{\top} W_{i}^{-1}(\alpha, \beta)\left(y_{i}-X_{i} \beta\right)
$$

If α is consistently estimated by $\widehat{\alpha}_{n}$, then we can substitute in and leave the estimating function

$$
\mathbf{G}(\beta)=\sum_{i=1}^{N} X_{i}^{\top} W_{i}^{-1}\left(\widehat{\alpha}_{n}, \beta\right)\left(y_{i}-X_{i} \beta\right)
$$

and $\widehat{\beta}_{W}$ can be found using the usual iterative schemes.

In this case, the estimated variance of $\widehat{\beta}_{W}$ is given by

$$
\begin{aligned}
\widehat{\operatorname{Var}}\left(\widehat{\beta}_{W}\right) & =\left(\sum_{i=1}^{N} X_{i}^{\top} W_{i}^{-1}\left(\widehat{\alpha}_{n}, \widehat{\beta}_{n}\right) X_{i}\right)^{-1} \\
& \times\left(\sum_{i=1}^{N} X_{i}^{\top} W_{i}^{-1}\left(\widehat{\alpha}_{n}, \widehat{\beta}_{n}\right) \widehat{\Sigma}_{i} W_{i}^{-1}\left(\widehat{\alpha}_{n}, \widehat{\beta}_{n}\right) X_{i}\right) \\
& \times\left(\sum_{i=1}^{N} X_{i}^{\top} W_{i}^{-1}\left(\widehat{\alpha}_{n}, \widehat{\beta}_{n}\right) X_{i}\right)^{-1}
\end{aligned}
$$

where it still remains to estimate Σ by $\widehat{\Sigma}$.

Session 2: Methods of Inference

The model can be extended by the inclusion of a link function h such that

$$
\mu_{i}=h\left(X_{i} \beta\right)
$$

in which case the estimating function is

$$
\mathbf{G}(\beta)=\sum_{i=1}^{N} D_{i}^{\top} W_{i}^{-1}(\alpha, \beta)\left(y_{i}-X_{i} \beta\right)
$$

where D_{i} is the $n_{i} \times p$ matrix of partial derivatives.

$$
\left[D_{i}\right]_{j k}=\frac{\partial \mu_{i j}}{\partial \beta_{k}}
$$

for $j=1, \ldots, n_{i}, k=1, \ldots, p$.

Session 2: Methods of Inference

We use the estimate based on the quantities

$$
\left(y_{i}-X_{i} \widehat{\beta}_{n}\right)\left(y_{i}-X_{i} \widehat{\beta}_{n}\right)^{\top} \quad i=1, \ldots, N
$$

For example, for a balanced design (all n_{i} equal to M), with common covariances, for equally-spaced data, we estimate

$$
\left[\Sigma_{i}\right]_{j j}=\frac{1}{N M} \sum_{i=1}^{N} \sum_{j=1}^{M}\left(y_{i j}-X_{i j} \widehat{\beta}_{n}\right)^{2}
$$

and

$$
\left[\Sigma_{i}\right]_{j k}=\frac{1}{N} \sum_{i=1}^{N}\left(y_{i j}-X_{i j} \widehat{\beta}_{n}\right)\left(y_{i k}-X_{i k} \widehat{\beta}_{n}\right)
$$

Session 2: Methods of Inference

Summary: GEE given by estimating function

$$
\mathbf{G}(\alpha, \beta)=\sum_{i=1}^{N} D_{i}^{\top} W_{i}^{-1}\left(y_{i}-\mu_{i}\right)
$$

where

- $\mu_{i}=h\left(X_{i} \beta\right)$
- $D_{i}=\frac{\partial \mu_{i}}{\partial \beta^{\top}}=X_{i}^{\top}$
- W_{i} is a working covariance model.
- $\widehat{\epsilon}=y_{i}-\widehat{\mu}_{i}=y_{i}-h\left(X_{i} \widehat{\beta}\right)$
- \widehat{D}_{i} is D_{i} evaluated at $\widehat{\mu}_{i}$.
- \widehat{A} given by

$$
\widehat{A}=\sum_{i=1}^{N} \widehat{D}_{i}^{\top} W_{i}^{-1} \widehat{D}_{i}
$$

- \widehat{B} given by

$$
\widehat{B}=\left(\sum_{i=1}^{N} \widehat{D}_{i}^{\top} W_{i}^{-1} \widehat{\epsilon}_{i} \widehat{\epsilon}_{i}^{\top} W_{i}^{-1} \widehat{D}_{i}\right)
$$

- the variance of $\widehat{\beta}$ is $\widehat{A}^{-1} \widehat{B} \widehat{A}^{-1}$

Session 2: Methods of Inference

81/ 132
Example: $X_{1}, \ldots, X_{n} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, independent. We have

$$
E_{X \mid \theta}[X]=\mu \quad E_{X \mid \theta}\left[X^{2}\right]=\sigma^{2} .
$$

We equate to the first two empirical moments

$$
m_{1}=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad m_{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}
$$

yielding equations for estimation

$$
m_{1}=\mu \quad m_{2}=\mu^{2}+\sigma^{2},
$$

or equivalently

$$
\begin{align*}
m_{1}-\mu & =0 \\
m_{2}-\left(\mu^{2}+\sigma^{2}\right) & =0 \tag{9}
\end{align*}
$$

Session 2: Methods of Inference

80/ 132

Generalized Method of Moments

The Generalized Method of Moments (GMM) approach to estimation is designed to produce estimates that satisfy moment conditions that are appropriate in the context of the modelling situation.
It is an extension to conventional method of moments (MM) in which theoretical and empirical moments are matched.
See Hall (2005), Generalized Method of Moments, Oxford Advanced Texts in Econometrics.

Session 2: Methods of Inference

Example: $X_{1}, \ldots, X_{n} \sim \operatorname{Gamma}(\alpha, \beta)$, independent. We have

$$
E_{X \mid \theta}[X]=\frac{\alpha}{\beta} \quad E_{X \mid \theta}\left[X^{2}\right]=\frac{\alpha(\alpha+1)}{\beta^{2}} .
$$

We equate to the first two empirical moments

$$
m_{1}=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad m_{2}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}
$$

yielding

$$
\widehat{\alpha}_{n}=\frac{m_{1}^{2}}{m_{2}-m_{1}^{2}} \quad \widehat{\beta}_{n}=\frac{m_{1}}{m_{2}-m_{1}^{2}}
$$

Session 2: Methods of Inference

83/ 132

A problem with this approach is that typically p is finite (that is, we have a finite number of parameters to estimate), and (often) an infinite number of moments to select from; for example, we could use
$E_{X \mid \theta}\left[X^{3}\right]=\frac{\alpha(\alpha+1)(\alpha+2)}{\beta^{3}}$

$$
E_{X \mid \theta}\left[X^{4}\right]=\frac{\alpha(\alpha+1)(\alpha+2)(\alpha+3)}{\beta^{4}}
$$

as two equations to estimate α and β.
That is, the MM estimator is not uniquely defined.

Session 2: Methods of Inference

OLS does not work effectively in this model; the estimates are typically biased.

Instead suppose that there is an observable variable z_{t}^{D} related to x_{t}, but so that

$$
\operatorname{Cov}\left[z_{t}^{D}, \epsilon_{t}^{D}\right]=0
$$

e.g. any of the factors that affect supply, n_{t}.

It is typical to assume that $E\left[\epsilon_{t}^{D}\right]$, so that

$$
E\left[y_{t}^{D}\right]=\alpha_{0} E\left[x_{t}\right]
$$

Econometric Model Suppose, for $t=1,2, \ldots$, we have

$$
\begin{align*}
y_{t}^{D} & =\alpha_{0} x_{t}+\epsilon_{t}^{D} \\
y_{t}^{S} & =\beta_{01} n_{t}+\beta_{02} x_{t}+\epsilon_{t}^{S} \tag{10}\\
y_{t}^{D} & =y_{t}^{S}\left(=y_{t}, \text { say }\right)
\end{align*}
$$

where, in year t,

- y_{t}^{D} is the Demand,
- y_{t}^{S} is the Supply,
- x_{t} is the price,
- n_{t} is a factor influencing supply.

We wish to estimate α_{0}, given pairs $\left(x_{t}, y_{t}\right), t=1, \ldots, T$.

Session 2: Methods of Inference

Then taking expectations through equation (10) we have the following relationship

$$
\begin{equation*}
E\left[z_{t}^{D} y_{t}\right]-\alpha_{0} E\left[z_{t}^{D} x_{t}\right]=0 \tag{11}
\end{equation*}
$$

and thus an MM estimate is

$$
\widehat{\alpha}_{T}=\frac{\sum_{t=1}^{T} z_{t}^{D} y_{t}}{\sum_{t=1}^{T} z_{t}^{D} x_{t}}
$$

GMM proceeds as follows: we define a population moment condition via vector function g as

$$
E_{V \mid \theta}\left[g\left(v_{t}, \theta\right)\right]=0
$$

For example, in the Normal example above, from equation (9), we have

$$
g\left(V_{t}, \theta\right)=\left[\begin{array}{c}
v_{t}-\mu \\
v_{t}^{2}-\mu-\sigma^{2}
\end{array}\right]
$$

Session 2: Methods of Inference

The Generalized Method of Moments (GMM) Estimator of parameter θ based on q moment conditions

$$
E\left[g\left(V_{t}, \theta\right)\right]=0
$$

is given as the value of θ that minimizes

$$
Q_{T}(\theta)=\bar{g}_{T}(\theta)^{\top} W_{T} \bar{g}_{T}(\theta)
$$

where

$$
\bar{g}_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} g\left(v_{t}, \theta\right)
$$

and W_{T} is a positive semidefinite matrix such that $W_{T} \xrightarrow{p} W$, a constant positive definite matrix, as $T \longrightarrow \infty$.

Session 2: Methods of Inference

In the econometric supply/demand model (11) we have

$$
g\left(v_{t}, \theta\right)=z_{t}^{D} y_{t}-\alpha_{0} z_{t}^{D} x_{t}
$$

so that $v_{t}=\left(z_{t}^{D}, y_{t}, x_{t}\right)^{\top}$, and $\theta=\alpha_{0}$.

Session 2: Methods of Inference

Note: in general $q \geq p$

- If $q=p$, then the system is just identified.
- If $q>p$, then the system is over-identified.

Over-identification is what distinguishes GMM from MM.
Some mild regularity conditions are needed to ensure that the estimation procedure works effectively.

Session 2: Methods of Inference

Regularity Conditions:

- strict stationarity,
- g is continuous in θ for all v_{t}, finite expectation that is continuous on Θ,
- q population moment constraints

$$
E\left[g\left(v_{t}, \theta_{0}\right)\right]=\mathbf{0} \quad(q \times 1)
$$

- global identification

$$
E\left[g\left(V_{t}, \theta^{\star}\right)\right] \neq \mathbf{0} \quad \theta^{\star} \neq \theta_{0}
$$

- Conditions on the derivative of g : the $(q \times p)$ matrix of derivatives of g with respect to the elements of θ

$$
\frac{\partial g_{j}}{\partial \theta_{k}}
$$

- θ_{0} is an interior point of Θ,
- the expectation matrix

$$
E\left[\frac{\partial g}{\partial \theta^{\top}}\right]
$$

exists and is finite, and has rank p when evaluated at θ_{0}.

Session 2: Methods of Inference

Alternative representation: moment condition

$$
F\left(\theta_{0}\right)^{\top} W^{1 / 2} E\left[g\left(v_{t}, \theta_{0}\right)\right]=0
$$

where

$$
F\left(\theta_{0}\right)=W^{1 / 2} E\left[\frac{\partial g\left(v_{t}, \theta_{0}\right)}{\partial \theta^{\top}}\right]
$$

We have $\operatorname{rank}\left\{F\left(\theta_{0}\right)\right\}=p$.
Identifying Restrictions:

$$
F\left(\theta_{0}\right)\left(F\left(\theta_{0}\right)^{\top} F\left(\theta_{0}\right)\right)^{-1} F\left(\theta_{0}\right)^{\top} W^{1 / 2} E\left[g\left(v_{t}, \theta_{0}\right)\right]=0
$$

Overidentifying Restrictions:

$$
\left(\mathbf{1}_{q}-F\left(\theta_{0}\right)\left(F\left(\theta_{0}\right)^{\top} F\left(\theta_{0}\right)\right)^{-1} F\left(\theta_{0}\right)^{\top}\right) W^{1 / 2} E\left[g\left(v_{t}, \theta_{0}\right)\right]=0
$$

Session 2: Methods of Inference

Asymptotic Properties: under mild regularity conditions

$$
\widehat{\theta}_{T} \xrightarrow{p} \theta_{0}
$$

(uniformly on Θ), and

$$
T^{1 / 2}\left(\widehat{\theta}_{T}-\theta_{0}\right) \xrightarrow{\mathfrak{L}} N\left(0, M S M^{\top}\right)
$$

where

$$
S=\lim _{T \longrightarrow \infty} \operatorname{Var}\left[T^{1 / 2} \bar{g}_{T}\left(\theta_{0}\right)\right]
$$

and

$$
M=\left(D_{0}^{\top} W D_{0}\right)^{-1} D_{0}^{\top} W
$$

with

$$
D_{0}=E\left[\frac{\partial g\left(v_{t}, \theta_{0}\right)}{\partial \theta^{\top}}\right]
$$

Session 2: Methods of Inference

Optimal choice of W : It can be shown that the optimal choice of W is S^{-1}, so in the finite sample case we use

$$
W_{T}=\widehat{S}_{T}^{-1}
$$

In practice, an iterative procedure can be used:

- At step 1 , set $W_{T}=\mathbf{1}_{q}$. Estimate $\widehat{\theta}_{T}(1)$, and then $\widehat{S}_{T}^{-1}(1)$.
- At step $2,3, \ldots$, set $W_{T}=\widehat{S}_{T}^{-1}(i-1)$. Estimate $\widehat{\theta}_{T}(i)$, and then $\widehat{S}_{T}^{-1}(i)$
- Iterate until convergence.

This algorithm typically converges in relatively few steps.

Session 2: Methods of Inference

M can be estimated using

$$
\widehat{M}_{T}=\left(D_{T}\left(\widehat{\theta}_{T}\right)^{\top} W_{T} D_{T}\left(\widehat{\theta}_{T}\right)\right)^{-1} D_{T}\left(\widehat{\theta}_{T}\right)^{\top} W_{T}
$$

where

$$
D_{T}(\theta)=\frac{1}{T} \sum_{t=1}^{T} \frac{\partial g\left(v_{t}, \theta\right)}{\partial \theta^{\top}}
$$

Estimation of S is more complicated; a number of different methods exist to produce an estimate \widehat{S}, depending on the context.

Session 2: Methods of Inference

Implementation in the Linear Regression Model.

Consider the model

$$
y_{t}=x_{t}^{\top} \theta_{0}+u_{t} \quad t=1, \ldots, T
$$

with instruments z_{t}, where

- x_{t} is $p \times 1$
- z_{t} is $q \times 1$.

Define

$$
u_{t}(\theta)=y_{t}-x_{t}^{\top} \theta_{0}
$$

Assumptions:

- (Strict) Stationarity
- z_{T} satisfies the population moment condition (PMC)

$$
E\left[z_{t} u_{t}\left(\theta_{0}\right)\right]=0
$$

(an orthogonality condition).

Session 2: Methods of Inference

Estimator: We have (in matrix form)

$$
Q_{T}(\theta)=\left\{T^{-1} U(\theta)^{\top} Z\right\} W_{T}\left\{T^{-1} Z^{\top} U(\theta)\right\}
$$

where now

- y is $(T \times 1)$,
- X is $(T \times p)$,
- Z is $(T \times q)$,
- U is $(T \times 1)$,

$$
U(\theta)=y-X \theta
$$

Then
$\widehat{\theta}_{T}=\left(\left\{T^{-1} X^{\top} Z\right\} W_{T}\left\{T^{-1} Z^{\top} X\right\}\right)^{-1}\left\{T^{-1} X^{\top} Z\right\} W_{T}\left\{T^{-1} Z^{\top} y\right\}$

Session 2: Methods of Inference

Fundamental Decomposition:

$$
E\left[z_{t} u_{t}(\theta)\right]=E\left[z_{t} u_{t}\left(\theta_{0}\right)\right]+E\left[z_{t} x_{t}^{\top}\right]\left(\theta_{0}-\theta\right)
$$

so that, via the PMC

$$
E\left[z_{t} u_{t}(\theta)\right]=E\left[z_{t} x_{t}^{\top}\right]\left(\theta_{0}-\theta\right)
$$

so θ_{0} is identified if

$$
E\left[z_{t} x_{t}^{\top}\right]\left(\theta_{0}-\theta\right) \neq \mathbf{0}
$$

Note that this is a linear system; $E\left[z_{t} x_{t}^{\top}\right]$ is a $(q \times p)$ matrix - we need

$$
\operatorname{rank}\left\{E\left[z_{t} x_{t}^{\top}\right]\right\}=p
$$

Session 2: Methods of Inference

The minimization is equivalent to solving the system

$$
\left\{T^{-1} X^{\top} Z\right\} W_{T} T^{-1} Z^{\top} U\left(\widehat{\theta}_{T}\right)=0
$$

Let

$$
F^{\top}=E\left[x_{t} z_{t}^{\top}\right]\left(W^{1 / 2}\right)^{\top}
$$

then GMM estimation is equivalent to solving

$$
F\left(F^{\top} F\right)^{-1} F^{\top} W^{1 / 2} E\left[z_{t} u_{t}\left(\theta_{0}\right)\right]=0
$$

which are the identifying conditions in this case.

Session 2: Methods of Inference

Asymptotic properties: Let

$$
M=\left(F^{\top} F\right)^{-1} F^{\top} W^{1 / 2}
$$

where $F=W^{1 / 2} E\left[z_{t} x_{t}^{\top}\right]$. Note that

$$
M=\left(E\left[x_{t} z_{t}^{\top}\right] W E\left[z_{t} x_{t}^{\top}\right]\right)^{-1} E\left[x_{t} z_{t}^{\top}\right] W
$$

Then $\widehat{\theta}_{T}$ is consistent for θ_{0}, and

$$
\begin{aligned}
& T^{1 / 2}\left(\widehat{\theta}_{T}-\theta_{0}\right) \xrightarrow{\mathfrak{L}} N\left(0, M S M^{\top}\right) \\
& S=\lim _{T \longrightarrow \infty} \operatorname{Var}\left[T^{-1 / 2} \sum_{t=1}^{T} z_{t} u_{t}\right]
\end{aligned}
$$

and where, in the case of independence across time $S=E\left[u_{t}^{2} z_{t} z_{t}^{\top}\right]$.

Session 2: Methods of Inference

105/ 132

Optimal choice of W : As before the optimal choice is

$$
W=S^{-1}
$$

and so in estimation

$$
W_{T}=\widehat{S}_{T}^{-1}
$$

An iterative procedure can again be used:

- set $W_{T}=\mathbf{1}_{q}$ or $W_{T}=\left(T^{-1} Z^{\top} Z\right)^{-1}$ and obtain $\widehat{\theta}_{T}$ and \widehat{S}_{T}
- set $W_{T}=\widehat{S}_{T}^{-1}$
and so on.

For practical purposes, the expectations are replaced by empirical averages over the T observations, for example, F is replaced by \widehat{F}_{T}, where

$$
\hat{F}_{T}=W_{T}^{1 / 2}\left\{T^{-1} Z^{\top} X\right\}
$$

and, for example,

$$
\widehat{S}_{T}=\frac{1}{T} \sum_{t=1}^{T} \widehat{u}_{t}^{2} z_{t} z_{t}^{\top}
$$

where

$$
\widehat{u}_{t}=y_{t}-x_{t}^{\top} \widehat{\theta}_{T}
$$

Session 2: Methods of Inference

Test for mis-specification: Using the asymptotic results, it can be shown that

$$
J_{T}=T Q\left(\widehat{\theta}_{T}\right)=T^{-1} U\left(\widehat{\theta}_{T}\right)^{\top} Z \widehat{S}_{T}^{-1} Z^{\top} U\left(\widehat{\theta}_{T}\right) \xrightarrow{\mathfrak{L}} \chi_{q-p}^{2}
$$

under the null hypothesis

$$
H_{0}: E\left[z_{t} u_{t}\left(\theta_{0}\right)\right]=0
$$

This test (Sargan's Test) allows assessment of model mis-specification (i.e. assessment of selected instruments).

Asymptotics also yield tests for individual coefficients (Wald-type tests).

Bayesian Methods

The classical view of Statistical Inference Theory contrasts with the alternative Bayesian approach.

In Bayesian theory, the likelihood function still plays a central role, but is combined with a prior probability distribution to give a posterior distribution for the parameters in the model. Inference, estimation, uncertainty reporting and hypothesis testing can be carried out within the Bayesian framework.

Session 2: Methods of Inference

Implementation Issues

- Analytic
- Analytic Approximation
- Numerical I: Numerical Integration
- Numerical II: Simulation and Monte Carlo
- Numerical III: Markov chain Monte Carlo

Some Reasons To Be Bayesian

- Inference through Probability (coherence, representations of uncertainty for observables)
- Prediction
- Ease of implementation
- Ease of interpretation
- The Logic of Conditional Probability
- Decision Theory (optimal decision making)

Session 2: Methods of Inference

Key Technical Results

- De-Finetti Representation
- Posterior Asymptotic Normality
- Consistency

Session 2: Methods of Inference

Different views of Bayesianism

- Subjectivist
- Objectivist
- Regularizers
- Pragmatist
- Opportunist (post-Bayesian)

Session 2: Methods of Inference

113/ 132

In the Bayesian framework, inference about an unknown parameter θ is carried out via the posterior probability distribution that combines prior opinion about the parameter with the information contained in the likelihood $f_{X \mid \theta}(x ; \theta)$ which represents the data contribution. In terms of events, Bayes Theorem says that

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

that is, it relates the two conditional probabilities $P(A \mid B)$ and $P(B \mid A)$.

SOME REASONS NOT TO BE BAYESIAN

(or rather, issues "to be managed" ...)

- Prior specification
- Computation
- Hypothesis Testing
- Model checking
- Model selection

Session 2: Methods of Inference

It follows that we can carry out inference via the conditional probability distribution for parameter θ given data $X=x$.

Specifically for parameter θ, the posterior probability
distribution for θ is denoted $p_{\theta \mid X}(\theta \mid x)$, and is calculated as

$$
\begin{equation*}
p_{\theta \mid X}(\theta \mid x)=\frac{f_{X \mid \theta}(x ; \theta) p_{\theta}(\theta)}{\int f_{X \mid \theta}(x ; \theta) p_{\theta}(\theta) d \theta}=c(x) f_{X \mid \theta}(x ; \theta) p_{\theta}(\theta) \tag{12}
\end{equation*}
$$

say, where $f_{X \mid \theta}(x ; \theta)$ is the likelihood, and $p_{\theta}(\theta)$ is the prior probability distribution for θ.

Session 2: Methods of Inference

115/ 132

The denominator in (12) can be regarded as the marginal distribution (or marginal likelihood) for data X evaluated at the observed data x

$$
\begin{equation*}
f_{X}(x)=\int f_{X \mid \theta}(x ; \theta) p_{\theta}(\theta) d \theta \tag{13}
\end{equation*}
$$

Session 2: Methods of Inference
117/ 132

A $\mathbf{1 0 0}(1-\alpha)$ Bayesian Credible Interval for θ is a subset C of Θ such that

$$
\mathrm{P}[\theta \in C] \geq 1-\alpha
$$

The $\mathbf{1 0 0}(1-\alpha)$ Highest Posterior Density Bayesian Credible Interval for θ, subject to $\mathrm{P}[\theta \in C] \geq 1-\alpha$ is a subset C of Θ such that $C=\left\{\theta \in \Theta: p_{\theta \mid X}(\theta \mid x) \geq k\right\}$ where k is the largest constant such that

$$
\mathrm{P}[\theta \in C] \geq 1-\alpha
$$

Session 2: Methods of Inference

Inference for the parameter θ via the posterior $p_{\theta \mid Y}(\theta \mid y)$ can be carried out once the posterior has been computed. Intuitively appealing methods rely on summaries of this probability distribution, that is, moments or quantiles. For example, one Bayes estimate, $\hat{\theta}_{B}$ of θ is the posterior expectation

$$
\widehat{\theta}_{B}=E_{p_{\theta \mid X}}[\theta \mid X=x]=\int \theta p_{\theta \mid X}(\theta \mid x) d \theta
$$

whereas another is the posterior mode, $\widehat{\theta}_{B}$, that is, the value of θ at which $p_{\theta \mid X}(\theta \mid x)$ is maximized, and finally the posterior median that satisfies

$$
\int_{-\infty}^{\widehat{\theta}_{B}} p_{\theta \mid X}(\theta \mid x) d \theta=\frac{1}{2}
$$

Session 2: Methods of Inference

Bayesian Inference and Decision Making

Suppose that, in an inference setting, a decision is to be made, and the decision is selected from some set \mathcal{D} of alternatives.
Regarding the parameter space Θ as a set of potential "states of nature", within which the "true" state θ lies.

Define the loss function for decision d and state θ as the loss (or penalty) incurred when the true state of nature is θ and the decision made is d. Denote this loss as

$$
L(d, \theta)
$$

Session 2: Methods of Inference

With prior $\pi(\theta)$ and no data, the expected loss (or the Bayes loss) is defined as

$$
\mathrm{E}_{\theta}[L(d, \theta)]=\int L(d, \theta) p_{\theta}(\theta) d \theta
$$

The optimal Bayesian decision is

$$
d_{B}=\arg \min _{d \in \mathcal{D}} E_{p_{\theta}}[L(d, \theta)]
$$

that is, the decision that minimizes the Bayes loss.

Session 2: Methods of Inference

The Bayes risk expected risk $R_{\theta}(\delta)$ associated with $\delta(X)$, with the expectation taken over the prior distribution of θ

$$
\begin{aligned}
R(\delta) & =\mathrm{E}_{\theta}\left[R_{\theta}(\delta)\right]=\mathrm{E}_{\theta}\left[\mathrm{E}_{X \mid \theta}[L(\delta(X), \theta)]\right] \\
& =\int\left\{\int L(\delta(x), \theta) f_{X \mid \theta}(x ; \theta) d x\right\} p_{\theta}(\theta) d \theta \\
& =\iint L(\delta(x), \theta) f_{X}(x) p_{\theta \mid X}(\theta \mid x) d x d \theta \\
& =\int\left\{\int L(\delta(x), \theta) p_{\theta \mid X}(\theta \mid x) d \theta\right\} f_{X}(x) d x
\end{aligned}
$$

If data are available, the optimal decision will intuitively become a function of the data. Suppose now that the decision in light of the data is denoted $\delta(x)$ (a function from \mathbb{X} to \mathcal{D}, and the associated loss is $L(\delta(x), \theta)$)
The risk associated with decision $\delta(X)$ is the expected loss associated with $\delta(X)$, with the expectation taken over the distribution of X given θ

$$
R_{\theta}(\delta)=\mathrm{E}_{X \mid \theta}[L(\delta(X), \theta)]=\int L(\delta(X), \theta) f_{X \mid \theta}(x ; \theta) d x
$$

Session 2: Methods of Inference

With prior $p_{\theta}(\theta)$ and fixed data x, the optimal Bayesian decision, termed the Bayes rule is

$$
\begin{aligned}
d_{B}=\underset{\delta \in \mathcal{D}}{\arg \min } R(\delta) & =\underset{\delta \in \mathcal{D}}{\arg \min } \int\left\{\int L(\delta(x), \theta) p_{\theta \mid X}(\theta \mid x) d \theta\right\} f_{X}(x) d x \\
& =\underset{\delta \in \mathcal{D}}{\arg \min } \int L(\delta(x), \theta) p_{\theta \mid X}(\theta \mid x) d \theta
\end{aligned}
$$

that is, the decision that minimizes the Bayes risk, or equivalently (posterior) expected loss in making decision δ, with expectation taken with respect to the posterior distribution $p_{\theta \mid X}(\theta \mid x)$.

Session 2: Methods of Inference

Applications of Decision Theory to Estimation

Under squared error loss

$$
L(\delta(x), \theta)=(\delta(x)-\theta)^{2}
$$

the Bayes rule for estimating θ is

$$
\delta(x)=\widehat{\theta}_{B}=\mathrm{E}_{p_{\theta \mid X}}[\theta \mid x]=\int \theta p_{\theta \mid X}(\theta \mid x) d \theta
$$

that is, the posterior expectation.

Session 2: Methods of Inference

Bayesian Hypothesis Testing

To mimic the Likelihood Ratio testing procedure outlined in previous sections. For two hypotheses H_{0} and H_{1} define

$$
\alpha_{0}=\mathrm{P}\left[H_{0} \mid X=x\right] \quad \alpha_{1}=\mathrm{P}\left[H_{1} \mid X=x\right]
$$

For example,

$$
\mathrm{P}\left[H_{0} \mid X=x\right]=\int_{R} \pi_{\theta \mid X}(\theta \mid x) d \theta
$$

where R is some region of Θ. Typically, the quantity

$$
\frac{\mathrm{P}\left[H_{0} \mid X=x\right]}{\mathrm{P}\left[H_{1} \mid X=x\right]}
$$

(the posterior odds on H_{0}) is examined.

Under absolute error loss

$$
L(\delta(x), \theta)=|\delta(x)-\theta|
$$

the Bayes rule for estimating θ is the solution of

$$
\int_{-\infty}^{\delta(x)} p_{\theta \mid X}(\theta \mid x) d \theta=\frac{1}{2}
$$

that is, the posterior median.

Session 2: Methods of Inference

Example: To test two simple hypothesis

$$
\begin{aligned}
& H_{0}: \theta=\theta_{0} \\
& H_{1}:
\end{aligned} \quad \theta=\theta_{1}
$$

define the prior probabilities of H_{0} and H_{1} as p_{0} and p_{1} respectively. Then, by Bayes Theorem

$$
\frac{\mathrm{P}\left[H_{1} \mid X=x\right]}{\mathrm{P}\left[H_{0} \mid X=x\right]}=\frac{\frac{f_{X \mid \theta}\left(x ; \theta_{1}\right) p_{1}}{f_{X \mid \theta}\left(x ; \theta_{0}\right) p_{0}+f_{X \mid \theta}\left(x ; \theta_{1}\right) p_{1}}}{\frac{f_{X \mid \theta}\left(x ; \theta_{0}\right) p_{0}}{f_{X \mid \theta}\left(x ; \theta_{0}\right) p_{0}+f_{X \mid \theta}\left(x ; \theta_{1}\right) p_{1}}}=\frac{f_{X \mid \theta}\left(x ; \theta_{1}\right) p_{1}}{f_{X \mid \theta}\left(x ; \theta_{0}\right) p_{0}}
$$

More generally, two hypotheses or models can be compared via the observed marginal likelihood that appears in (13), that is if

$$
\frac{f_{X}(x ; \text { Model } 1)}{f_{X}(x ; \text { Model } 0)}=\frac{\int f_{X \mid \theta}^{(1)}\left(x ; \theta_{1}\right) p_{\theta_{1}}\left(\theta_{1}\right) d \theta_{1}}{\int f_{X \mid \theta}^{(0)}\left(x ; \theta_{0}\right) p_{\theta_{0}}\left(\theta_{0}\right) d \theta_{0}}
$$

is greater than one we would favour Model 1 (with likelihood $f_{X \mid \theta}^{(1)}$ and prior $p_{\theta_{1}}$) over Model 0 (with likelihood $f_{X \mid \theta}^{(0)}$ and prior $p_{\theta_{0}}$).

Session 2: Methods of Inference

The posterior distribution

$$
p_{\theta \mid X}(\theta \mid x)=\frac{f_{X \mid \theta}(x ; \theta) p_{\theta}(\theta)}{\int f_{X \mid \theta}(x ; \theta) p_{\theta}(\theta) d \theta}
$$

is a joint probability distribution in \mathbb{R}^{p}. Computation of posterior summaries, estimates etc. typically requires an integral in a high dimension. This can prove problematic if the likelihood prior combination is not analytically tractable.

Session 2: Methods of Inference

Prediction The Bayesian approach to prediction follows naturally from probability logic. The posterior predictive distribution for random variables X^{\star}, given data $X=x$, is computed as

$$
f_{X^{\star} \mid X}\left(x^{\star} \mid x\right)=\int f_{X^{\star} \mid \theta}\left(x^{\star} ; \theta\right) p_{\theta \mid X}(\theta \mid x) d \theta
$$

Point predictions and prediction intervals can be computed from this distribution.

Session 2: Methods of Inference

When $p_{\theta \mid X}(\theta \mid x)$ is not a standard multivariate distribution, integrals with respect to $p_{\theta \mid X}$ can be approximated in a number of ways:

- numerical integration,
- analytic approximation,
- Monte Carlo/Importance sampling.

In high dimensions, such methods can prove inaccurate.

Session 2: Methods of Inference

131/ 132

Simulation-based inference: Inferences can be made from a large (independent) sample from via $p_{\theta \mid X}$, rather than the analytic form itself.

Using ideas from Monte Carlo, if we can obtain a sample of size M from $p_{\theta \mid X}, \theta^{(1)}$.,$\theta^{(}$ $E_{\theta \mid X}[h(\theta) \mid x]$ as follows

$$
\widehat{E}_{\theta \mid X}[h(\theta) \mid x]=\frac{1}{M} \sum_{m=1}^{M} h\left(\theta^{(m)}\right)
$$

Session 2: Methods of Inference

If $p_{\theta \mid X}$ is non-standard and high-dimensional, producing a large sample from it may also prove problematic.

This problem has been successfully approached using

Markov Chain Monte Carlo

that is, it is possible to construct a aperiodic and irreducible Markov chain on the parameter space with stationary distribution $p_{\theta \mid X}$

This method will be studied in detail later.

