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Objectives

◮ Data Analyses

◮ Methods of Statistical Inference

◮ Classes of Models

◮ Statistical Computation Techniques

Data Analyses

◮ Summary/exploratory

◮ Inferential

◮ Predictive

Methods of Statistical Inference

◮ Frequentist

◮ Likelihood

◮ Quasi-likelihood

◮ Estimating Equations

◮ Generalized Method of Moments

◮ Bayesian



Classes of Models

◮ Univariate, independent

◮ Multivariate, independent

◮ Regression

◮ Generalized Regression

◮ Univariate, dependent (Time Series)

◮ Multivariate, dependent

Statistical Computation

◮ Numerical Methods

◮ Kalman Filter

◮ Monte Carlo

◮ Markov chain Monte Carlo

Outline of Syllabus

Session 1

1 Probabilistic and Statistical Modelling
◮ Forms of Data
◮ Probability and probability distributions
◮ Multivariate modelling
◮ Least-squares and Regression
◮ Stochastic Processes



Session 2

2 Inference
◮ Likelihood theory
◮ Quasi-likelihood/Estimating Equations
◮ Generalized Method of Moments
◮ Bayesian theory

Session 3

3 Time Series Analysis
◮ ARIMA/Box-Jenkins Modelling
◮ Forecasting
◮ Spectral Methods
◮ Long memory
◮ Nonstationarity
◮ Unit roots

Session 4

4 Multivariate Time Series
◮ Vector ARIMA
◮ Cointegration

Session 5

5 Statistical Computation
◮ Monte Carlo
◮ Importance Sampling
◮ Quasi Monte Carlo
◮ Markov chain Monte Carlo
◮ Sequential Monte Carlo



Session 6

6 Filtering
◮ Kalman Filter
◮ Particle Filter

Session 7

7 Volatility Modelling
◮ ARCH/GARCH
◮ Stochastic volatility
◮ Multivariate Methods

Session 8

8 Panel Data
◮ Models for Longitudinal Data

Part I

Session 1: Probabilistic Modelling
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Random quantity denoted X

Probability model denoted fX (x ; θ) (pdf) or FX (x ; θ) (cdf)

FX (x) =

∫

x

−∞
fX (t; θ) dt

Finite dimensional parameter θ

Data x1, x2, . . . , xn available
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Repeated observations of random variables X1,X2, . . . ,Xn.

Different assumptions about the data collection mechanisms lead
to different probability models.

Crucial assumptions relate to dependencies between the variables.
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(a) Scalar random variables, mutually independent

◮ repeated observation of the same quantity
◮ observations do not influence/affect each other.
◮ the random sample assumption
◮ UNIVARIATE ANALYSIS

(b) Vector random variables, mutually independent

◮ repeated observation of the same set of quantities or features
◮ observations do not influence/affect each other.
◮ possible dependence between features
◮ MULTIVARIATE ANALYSIS
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(c) Predictor/Response

◮ repeated observation of the paired variables
◮ systematic (causal) relationship between variables.
◮ REGRESSION

(d) Repeated Measures

◮ small number of repeated observations of the same set of
quantities on the same experimental units

◮ possible dependence between repeated observations
◮ MULTIVARIATE ANALYSIS
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(e) Scalar, repeated observation, time-ordered

◮ long sequences of repeated measurement of single quantity.
◮ time ordering structures dependence between variables
◮ TIME SERIES ANALYSIS

(f) Vector-valued, repeated observation, time-ordered

◮ long sequence of vector observation
◮ time ordering structures dependence between variables
◮ MULTIVARIATE TIME SERIES
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◮ Dependence

◮ Latent Structure

◮ Periodicity

◮ System changes

◮ Nonstationarity
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Objectives of data analysis:

◮ Summary

◮ Comparison

◮ Inference

◮ Testing

◮ Model Assessment

◮ Prediction/Forecasting
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Why do we bother with probabilistic modelling ?

◮ because we are forced to deal with uncertainty due the lack of

perfect information

◮ because we wish to represent the uncertainty in our analyses
correctly

◮ because we wish to act in a coherent fashion in combining or
updating our knowledge or opinion

◮ because we want to carry out prediction

Probability is the only framework that offers coherent treatment of
uncertainty.
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Probability Models: Common Univariate Distributions

◮ Discrete distributions

◮ Binomial
◮ Geometric
◮ Poisson

◮ Continuous distributions

◮ Exponential
◮ Gamma (Chisquared)
◮ Beta
◮ Normal
◮ Student-t
◮ Fisher-F
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◮ Binomial distribution

fX (x ; θ) =

(

n

x

)

θx(1 − θ)n−x x = 0, 1, 2, . . . , n

for parameter θ > 0, and positive integer n > 0.

Number of successes in n independent and identical 0/1 trials.
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◮ Poisson distribution

fX (x ;λ) =
exp{−λ}λx

x!
x = 0, 1, 2, . . .

for parameter λ > 0.

Most common model for count data.
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◮ Gamma distribution

fX (x ;α, β) =
βα

Γ(α)
xα−1 exp{−βx} x > 0

for parameters α, β > 0, where

Γ(α) =

∫ ∞

0
xα−1 exp{−x} dx = (α − 1)Γ(α − 1).

Special Case: if α = ν/2 for positive integer ν, and β = 1/2,

Gamma(ν/2, 1/2) ≡ Chisquared(ν)
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◮ Normal (Gaussian) distribution

fX (x ;µ, σ) =

(

1

2πσ2

)1/2

exp

{

− 1

2σ2
(x − µ)2

}

for parameters µ, σ where σ > 0.

Most commonly used model for data analysis.
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Models linked to the Normal:

◮ Chisquared

◮ Student-t

◮ Fisher-F

◮ Laplace

Distributions linked via transformation.
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Multivariate distributions: versions of

◮ Binomial (Multinomial)

◮ Gamma (Multivariate Gamma, Wishart)

◮ Beta (Dirichlet)

◮ Normal (Multivariate Normal)

◮ Student-t

exist.
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Multivariate Normal Distribution

Suppose that vector random variable X = (X1,X2, . . . ,Xk)T has a
multivariate normal distribution with pdf given by

fX(x;µ,Σ) =

(

1

2π

)k/2 1

|Σ|1/2
exp

{

−1

2
(x − µ)TΣ−1(x − µ)

}

where Σ is the k × k (positive definite, non-singular)
variance-covariance matrix

Consider the case where the expected value µ is the k × 1 zero
vector; results for the general case are easily available by
transformation.
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Consider partitioning X into two components X1 and X2 of
dimensions d and k − d respectively, that is,

X =

[

X1

X2

]

.

We attempt to deduce

(a) the marginal distribution of X1, and

(b) the conditional distribution of X2 given that X1 = x1.
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First, write

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

where Σ11 is d × d , Σ22 is (k − d) × (k − d), Σ21 = ΣT
12, and

Σ−1 = V =

[

V11 V12

V21 V22

]

so that ΣV = Ik (Ir is the r × r identity matrix) gives

[

Σ11 Σ12

Σ21 Σ22

] [

V11 V12

V21 V22

]

=

[

Id 0
0 Ik−d

]
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Σ11V11 + Σ12V21 = Id (1)

Σ11V12 + Σ12V22 = 0 (2)

Σ21V11 + Σ22V21 = 0 (3)

Σ21V12 + Σ22V22 = Ik−d . (4)

From the multivariate normal pdf, we can re-express the term in
the exponent as

xTΣ−1x = xT
1 V11x1 + xT

1 V12x2 + xT
2 V21x1 + xT

2 V22x2. (5)
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We can write

xTΣ−1x = (x2 − m)TM(x2 − m) + c (6)

and by comparing with equation (5) we can deduce that, for
quadratic terms in x2,

xT
2 V22x2 = xT

2 Mx2 ∴ M = V22 (7)

for linear terms

xT
2 V21x1 = xT

2 Mm ∴ m = V−1
22 V21x1 (8)

and for constant terms

xT
1 V11x1 = c + mTMm ∴ c = xT

1 (V11 − V T
21V

−1
22 V21)x1

(9)
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That is

xTΣ−1x = (x2 − V−1
22 V21x1)

TV22(x2 − V−1
22 V21x1)

+xT
1 (V11 − V T

21V
−1
22 V21)x1, (10)

a sum of two terms, where the first can be interpreted as a
function of x2, given x1, and the second is a function of x1 only.
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Hence
fX(x) = fX2|X1

(x2|x1)fX1(x1) (11)

where

fX2|X1
(x2|x1) ∝ exp

{

−1

2
(x2 − V−1

22 V21x1)
TV22(x2 − V−1

22 V21x1)

}

(12)
giving that

X2|X1 = x1 ∼ N
(

V−1
22 V21x1,V

−1
22

)

(13)
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and

fX1(x1) ∝ exp

{

−1

2
xT
1 (V11 − V T

21V
−1
22 V21)x1

}

(14)

giving that

X1 ∼ N
(

0, (V11 − V T
21V

−1
22 V21)

−1
)

. (15)

Session 1: Probabilistic and Statistical Modelling

40/ 61

But, from equation (2), Σ12 = −Σ11V12V
−1
22 , and then from

equation (1), substituting in Σ12,

Σ11V11 − Σ11V12V
−1
22 V21 = Id

so that

Σ11 = (V11 − V12V
−1
22 V21)

−1 = (V11 − V T
21V

−1
22 V21)

−1.

Hence
X1 ∼ N (0,Σ11) , (16)

that is, we can extract the Σ11 block of Σ to define the marginal
variance-covariance matrix of X1.
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From equation (2), V12 = −Σ−1
11 Σ12V22, and then from equation

(4), substituting in V12

−Σ21Σ
−1
11 Σ12V22 + Σ22V22 = Ik−d

so that

V−1
22 = Σ22 − Σ21Σ

−1
11 Σ12 = Σ22 − ΣT

12Σ
−1
11 Σ12.
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Finally, from equation (2), taking transposes on both sides, we
have that V21Σ11 + V22Σ21 = 0. Then pre-multiplying by V−1

22 ,
and post-multiplying by Σ−1

11 , we have

V−1
22 V21 + Σ21Σ

−1
11 = 0 ∴ V−1

22 V21 = −Σ21Σ
−1
11 ,

so we have, substituting into equation (13), that

X2|X1 = x1 ∼ N
(

−Σ21Σ
−1
11 x1,Σ22 − Σ21Σ

−1
11 Σ12

)

. (17)
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Summary
Any marginal, and any conditional distribution of a multivariate
normal joint distribution is also multivariate normal.

These results are very important in regression modelling to allow
study of properties of estimators and predictors.

Session 1: Probabilistic and Statistical Modelling

44/ 61

The Central Limit Theorem

The Normal distribution is commonly used in statistical
calculations to approximate the distribution of sum random
variables. For example, common estimators include the sample

mean X and sample variance s2

X =
1

n

n
∑

i=1

Xi s2 =
1

n − 1

n
∑

i=1

(Xi − X )2

The Central Limit Theorem Characterizes the distribution of such
variables (under certain regularity conditions)
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THEOREM (Lindeberg-Lévy)
Suppose X1, ...,Xn are i.i.d. random variables with mgf MX , with
EfX

[Xi ] = µ and VarfX [Xi ] = σ2 < ∞.

Then

Zn =

n
∑

i=1

Xi − nµ

√
nσ2

L−→ Z ∼ N(0, 1)

as n −→ ∞,irrespective of the distribution of the Xi s.

That is, the distribution of Zn tends to a standard normal

distribution as n tends to infinity.
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This result allows us to construct the following approximations:

Zn

·

∼

·

N(0, 1)

Tn =
n

∑

i=1

Xi

·

∼

·

N(nµ, nσ2)

X =
1

n

n
∑

i=1

Xi

·

∼

·

N(µ, σ2/n)
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Regression Modelling

Suppose we have

◮ response Y

◮ predictors X1,X2, . . . ,XD

we want to explain the variation in Y via a function of
X1,X2, . . . ,XD .
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The observed value of Y can be modelled as

Y = g(X , β) ◦ ǫ

where

◮ X is a design matrix of predictors

◮ β is K × 1 parameter vector

◮ g is some link function

◮ ǫ is a random (residual) error vector

◮ ◦ is a operator defining the measurement error scale (typically
additive or multiplicative)
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Most typically, ◦ is addition, and the random error term is
presumed Normally distributed.

The model can be simplified further if it can be written

Y = g(X )β + ǫ

that is, linear in the parameters.

Inference for this model is straightforward. Another common
assumption has the elements of error vector ǫ as identically
distributed and independent random variables (homoscedastic).
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All of these simplifying assumptions can be relaxed:

◮ homoscedasticity (yields GENERALIZED REGRESSION)

◮ independence (yields MULTIVARIATE REGRESSION)

◮ linearity (yields NON-LINEAR REGRESSION)

◮ normality (yields GENERALIZED LINEAR MODELLING)
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Stochastic Processes

Can think of repeated observation of the system X1,X2, . . . ,

◮ representing a sequence of observations of a process evolving
in discrete time usually at fixed, equal intervals.

◮ representing a sequence of discrete-time observations of a
process evolving in continuous time

X could be univariate or multivariate. We wish to use time
series analysis to characterize time series and understand structure.
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Possibilities

State (possible values of X ) Time Notation

Continuous Continuous X (t)

Continuous Discrete Xt

Discrete Continuous

Discrete Discrete
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Denote the process by {Xt}. For fixed t, Xt is a random variable
(r.v.), and hence there is an associated cumulative distribution
function (cdf):

Ft(a) = P(Xt ≤ a),

and

E [Xt ] =

∫ ∞

−∞
x dFt(x) ≡ µt Var [Xt ] =

∫ ∞

−∞
(x − µt)

2 dFt(x).
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We are interested in the relationships between the various r.v.s
that form the process. For example, for any t1 and t2 ∈ T ,

Ft1,t2(a1, a2) = P(Xt1 ≤ a1,Xt2 ≤ a2)

gives the bivariate cdf. More generally for any t1, t2, . . . , tn ∈ T ,

Ft1,t2,...,tn(a1, a2, . . . , an) = P(Xt1 ≤ a1, . . . ,Xtn ≤ an)

We consider the subclass of stationary processes.
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COMPLETE/STRONG/STRICT stationarity
{Xt} is said to be completely stationary if, for all n ≥ 1, for any

t1, t2, . . . , tn ∈ T

and for any τ such that

t1 + τ , t2 + τ , . . . , tn + τ ∈ T

are also contained in the index set, the joint cdf of
{Xt1 ,Xt2 , . . . ,Xtn} is the same as that of
{Xt1+τ ,Xt2+τ , . . . ,Xtn+τ} i.e.,

Ft1,t2,...,tn(a1, a2, . . . , an) = Ft1+τ ,t2+τ ,...,tn+τ (a1, a2, . . . , an),

so that the probabilistic structure of a completely stationary
process is invariant under a shift in time.
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SECOND-ORDER/WEAK/COVARIANCE stationarity
{Xt} is said to be second-order stationary if, for all n ≥ 1, for any

t1, t2, . . . , tn ∈ T

and for any τ such that t1 + τ , t2 + τ , . . . , tn + τ ∈ T are also
contained in the index set, all the joint moments of orders 1 and 2
of {Xt1 ,Xt2 , . . . ,Xtn} exist and are finite. Most importantly, these
moments are identical to the corresponding joint moments of
{Xt1+τ , Xt2+τ , . . . ,Xtn+τ}. Hence,

E [Xt ] ≡ µ Var [Xt ] ≡ σ2 (= E
[

X 2
t

]

− µ2),

are constants independent of t.
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If we let τ = −t1,

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ] = E [X0Xt2−t1 ] ,

and with τ = −t2,

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ] = E [Xt1−t2X0] .
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Hence, E [Xt1Xt2 ] is a function of the absolute difference |t2 − t1|
only, similarly, for the covariance between Xt1 & Xt2 :

Cov [Xt1 ,Xt2 ] = E [(Xt1 − µ)(Xt2 − µ)]

= E [Xt1Xt2 ] − µ2.

For a discrete time second-order stationary process {Xt} we define
the autocovariance sequence (acvs) by

sτ ≡ Cov [Xt ,Xt+τ ]

= Cov [X0,Xτ ] .
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NOTES:

◮ τ is called the lag.

◮ s0 = σ2 and s−τ = sτ .

◮ The autocorrelation sequence (acs) is given by

ρτ =
sτ

s0
=

Cov [Xt ,Xt+τ ]

σ2
.

◮ Since ρτ is a correlation coefficient, |sτ | ≤ s0.
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◮ The variance-covariance matrix of equispaced X ’s,
(X1, X2, . . . ,XN)T has the form















s0 s1 . . . sN−2 sN−1

s1 s0 . . . sN−3 sN−2
...

. . .

sN−2 sN−3 . . . s0 s1
sN−1 sN−2 . . . s1 s0















which is known as a symmetric Toeplitz matrix – all elements
on a diagonal are the same. Note the above matrix has only
N unique elements, s0, s1, . . . , sN−1.



Session 1: Probabilistic and Statistical Modelling

61/ 61

◮ A stochastic process {Xt} is called Gaussian if, for all n ≥ 1
and for any t1, t2, . . . , tn contained in the index set, the joint
cdf of Xt1 , Xt2 , . . . ,Xtn is multivariate Gaussian.

◮ 2nd-order stationary Gaussian ⇒ complete stationarity

◮ follows as the multivariate Normal distribution is completely
characterized by 1st and 2nd moments

◮ not true in general.

◮ Complete stationarity ⇒ 2nd-order stationary in general.


