Statistical Inference and Methods	Objectives • Data Analyses
Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/~das01/ 6th December 2005	 Methods of Statistical Inference Classes of Models Statistical Computation Techniques
< ロ > 〈 豆 > 〈 □ > < □ > (□ > (□ >))))))))))))))))))	· · · · · · · · · · · · · · · · · · ·
Data Analyses	Methods of Statistical Inference
 Summary/exploratory Inferential Predictive 	 Frequentist Likelihood Quasi-likelihood Estimating Equations Generalized Method of Moments Bayesian
(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	くロット(中)・(中)・(中)・(中)・(中)・(中)・(中)・(中)・(中)・(中)・

Classes of Models	Statistical Computation
 Univariate, independent Multivariate, independent Regression Generalized Regression Univariate, dependent (Time Series) Multivariate, dependent 	 Numerical Methods Kalman Filter Monte Carlo Markov chain Monte Carlo
(ロ)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)	<ロシイクシイモンモンション き のので Session 1
Outline of Syllabus	 1 Probabilistic and Statistical Modelling Forms of Data Probability and probability distributions Multivariate modelling Least-squares and Regression Stochastic Processes
(日) (週) (言) (言) (言) ()	

Session 2	Session 3
<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>
Session 4	Session 5
 4 Multivariate Time Series Vector ARIMA Cointegration 	 5 Statistical Computation Monte Carlo Importance Sampling Quasi Monte Carlo Markov chain Monte Carlo Sequential Monte Carlo

Session 6		Session 7
6 Filtering Kalman Filter Particle Filter		 7 Volatility Modelling ARCH/GARCH Stochastic volatility Multivariate Methods
	・ロト・個ト・ミト・ミト ヨー つへで	(日)(信)(王)(王)(王)(王)(王)(王)(王)(王)(王)(王)(王)(王)(王)
Session 8 8 Panel Data Models for Longitudinal Data		Part I Session 1: Probabilistic Modelling
	<=> <個> <目> <目> <目> <目> <	 (ロ) (合) (注) (注) (注) (注)

Session 1: Probabilistic and Statistical Modelling 27/61

Poisson distribution

$$f_X(x;\lambda) = \frac{\exp\{-\lambda\}\lambda^x}{x!} \qquad x = 0, 1, 2, \dots$$

for parameter $\lambda > 0$.

Most common model for count data.

Session 1: Probabilistic and Statistical Modelling $_{\rm 28/\;61}$

Gamma distribution

$$f_X(x; \alpha, \beta) = rac{eta^{lpha}}{\Gamma(lpha)} x^{lpha - 1} \exp\{-eta x\} \qquad x > 0$$

for parameters $\alpha, \beta > 0$, where

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} \exp\{-x\} dx = (\alpha-1)\Gamma(\alpha-1).$$

Special Case: if $\alpha = \nu/2$ for positive integer ν , and $\beta = 1/2$,

 $Gamma(\nu/2, 1/2) \equiv Chisquared(\nu)$

・ロト・日本・日本・日本・日本・日本

Session 1: Probabilistic and Statistical Modelling ^{33/61}

Consider partitioning **X** into two components X_1 and X_2 of dimensions d and k - d respectively, that is,

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight].$$

We attempt to deduce

(a) the marginal distribution of X_1 , and

(b) the conditional distribution of \textbf{X}_2 given that $\textbf{X}_1=\textbf{x}_1.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへの

Session 1: Probabilistic and Statistical Modelling $_{35/61}$

$$\begin{split} \Sigma_{11} V_{11} + \Sigma_{12} V_{21} &= I_d \quad (1) \\ \Sigma_{11} V_{12} + \Sigma_{12} V_{22} &= 0 \quad (2) \\ \Sigma_{21} V_{11} + \Sigma_{22} V_{21} &= 0 \quad (3) \\ \Sigma_{21} V_{12} + \Sigma_{22} V_{22} &= I_{k-d}. \quad (4) \end{split}$$

From the multivariate normal pdf, we can re-express the term in the exponent as $\label{eq:product}$

$$\mathbf{x}^{\mathsf{T}} \Sigma^{-1} \mathbf{x} = \mathbf{x}_{1}^{\mathsf{T}} V_{11} \mathbf{x}_{1} + \mathbf{x}_{1}^{\mathsf{T}} V_{12} \mathbf{x}_{2} + \mathbf{x}_{2}^{\mathsf{T}} V_{21} \mathbf{x}_{1} + \mathbf{x}_{2}^{\mathsf{T}} V_{22} \mathbf{x}_{2}.$$
 (5)

Session 1: Probabilistic and Statistical Modelling 34/61

First, write

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

where Σ_{11} is $d \times d$, Σ_{22} is $(k - d) \times (k - d)$, $\Sigma_{21} = \Sigma_{12}^{\mathsf{T}}$, and
$$\Sigma^{-1} = V = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}$$

so that $\Sigma V = I_k$ (I_r is the $r \times r$ identity matrix) gives
$$\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix} = \begin{bmatrix} I_d & 0 \\ 0 & I_{k-d} \end{bmatrix}$$

Session 1: Probabilistic and Statistical Modelling $_{36/61}$

We can write

$$\mathbf{x}^{\mathsf{T}} \Sigma^{-1} \mathbf{x} = (\mathbf{x}_2 - \mathbf{m})^{\mathsf{T}} M(\mathbf{x}_2 - \mathbf{m}) + \mathbf{c}$$
 (6)

and by comparing with equation (5) we can deduce that, for quadratic terms in $\boldsymbol{x}_2,$

$$\mathbf{x}_2^{\mathsf{T}} V_{22} \mathbf{x}_2 = \mathbf{x}_2^{\mathsf{T}} M \mathbf{x}_2 \qquad \therefore \qquad M = V_{22} \tag{7}$$

for linear terms

$$\mathbf{x}_{2}^{\mathsf{T}} V_{21} \mathbf{x}_{1} = \mathbf{x}_{2}^{\mathsf{T}} M \mathbf{m} \qquad \therefore \qquad \mathbf{m} = V_{22}^{-1} V_{21} \mathbf{x}_{1} \qquad (8)$$

and for constant terms

$$\mathbf{x}_{1}^{\mathsf{T}}V_{11}\mathbf{x}_{1} = \mathbf{c} + \mathbf{m}^{\mathsf{T}}M\mathbf{m} \qquad \therefore \qquad \mathbf{c} = \mathbf{x}_{1}^{\mathsf{T}}(V_{11} - V_{21}^{\mathsf{T}}V_{22}^{-1}V_{21})\mathbf{x}_{1}$$
(9)

Session 1: Probabilistic and Statistical Modelling _{37/61}

That is

$$\mathbf{x}^{\mathsf{T}} \Sigma^{-1} \mathbf{x} = (\mathbf{x}_2 - V_{22}^{-1} V_{21} \mathbf{x}_1)^{\mathsf{T}} V_{22} (\mathbf{x}_2 - V_{22}^{-1} V_{21} \mathbf{x}_1) + \mathbf{x}_1^{\mathsf{T}} (V_{11} - V_{21}^{\mathsf{T}} V_{22}^{-1} V_{21}) \mathbf{x}_1, \qquad (10)$$

a sum of two terms, where the first can be interpreted as a function of x_2 , given x_1 , and the second is a function of x_1 only.

Session 1: Probabilistic and Statistical Modelling 39/61

and

$$f_{\mathbf{X}_{1}}(\mathbf{x}_{1}) \propto \exp\left\{-\frac{1}{2}\mathbf{x}_{1}^{\mathsf{T}}(V_{11}-V_{21}^{\mathsf{T}}V_{22}^{-1}V_{21})\mathbf{x}_{1}\right\}$$
(14)

giving that

$$\mathbf{X}_{1} \sim N\left(0, (V_{11} - V_{21}^{\mathsf{T}} V_{22}^{-1} V_{21})^{-1}\right).$$
 (15)

Session 1: Probabilistic and Statistical Modelling 38/61

Hence

$$f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{X}_2|\mathbf{X}_1}(\mathbf{x}_2|\mathbf{x}_1)f_{\mathbf{X}_1}(\mathbf{x}_1)$$
(11)

where

$$f_{\mathbf{X}_{2}|\mathbf{X}_{1}}(\mathbf{x}_{2}|\mathbf{x}_{1}) \propto \exp\left\{-\frac{1}{2}(\mathbf{x}_{2} - V_{22}^{-1}V_{21}\mathbf{x}_{1})^{\mathsf{T}}V_{22}(\mathbf{x}_{2} - V_{22}^{-1}V_{21}\mathbf{x}_{1})\right\}$$
(12)

 $\mathbf{X}_{2}|\mathbf{X}_{1} = \mathbf{x}_{1} \sim N(V_{22}^{-1}V_{21}\mathbf{x}_{1}, V_{22}^{-1})$

giving that

< ロ > < 母 > < 言 > < 言 > こ う へ ご

(13)

Session 1: Probabilistic and Statistical Modelling $_{\rm 40/\;61}$

But, from equation (2), $\Sigma_{12} = -\Sigma_{11}V_{12}V_{22}^{-1}$, and then from equation (1), substituting in Σ_{12} ,

$$\Sigma_{11}V_{11} - \Sigma_{11}V_{12}V_{22}^{-1}V_{21} = I_d$$

so that

$$\Sigma_{11} = (V_{11} - V_{12}V_{22}^{-1}V_{21})^{-1} = (V_{11} - V_{21}^{\mathsf{T}}V_{22}^{-1}V_{21})^{-1}.$$

Hence

$$\boxed{\boldsymbol{X}_{1} \sim N\left(\boldsymbol{0},\boldsymbol{\Sigma}_{11}\right),}\tag{16}$$

that is, we can extract the Σ_{11} block of Σ to define the marginal variance-covariance matrix of X_1 .

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへの

Session 1: Probabilistic and Statistical Modelling 41/61

From equation (2), $V_{12}=-\Sigma_{11}^{-1}\Sigma_{12}V_{22}$, and then from equation (4), substituting in V_{12}

 $-\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}V_{22} + \Sigma_{22}V_{22} = I_{k-d}$

so that

$$V_{22}^{-1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} = \Sigma_{22} - \Sigma_{12}^{\mathsf{T}} \Sigma_{11}^{-1} \Sigma_{12}.$$

Session 1: Probabilistic and Statistical Modelling 43/ 61

Summary

Any marginal, and any conditional distribution of a multivariate normal joint distribution is also multivariate normal.

These results are very important in *regression modelling* to allow study of properties of estimators and predictors.

Session 1: Probabilistic and Statistical Modelling

Finally, from equation (2), taking transposes on both sides, we have that $V_{21}\Sigma_{11} + V_{22}\Sigma_{21} = 0$. Then pre-multiplying by V_{22}^{-1} , and post-multiplying by Σ_{11}^{-1} , we have

$$V_{22}^{-1}V_{21} + \Sigma_{21}\Sigma_{11}^{-1} = 0 \qquad \therefore \qquad V_{22}^{-1}V_{21} = -\Sigma_{21}\Sigma_{11}^{-1},$$

so we have, substituting into equation (13), that

$$\mathbf{X}_{2}|\mathbf{X}_{1} = \mathbf{x}_{1} \sim N\left(-\Sigma_{21}\Sigma_{11}^{-1}\mathbf{x}_{1}, \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\right).$$
(17)

・ロト・4回ト・4回ト・回・ 回・ つへの

Session 1: Probabilistic and Statistical Modelling 44/61

The Central Limit Theorem

The Normal distribution is commonly used in statistical calculations to approximate the distribution of sum random variables. For example, common estimators include the sample mean \overline{X} and sample variance s^2

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

The Central Limit Theorem Characterizes the distribution of such variables (under certain regularity conditions)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへの

Session 1: Probabilistic and Statistical Modelling

45/ 61

THEOREM (Lindeberg-Lévy)

Suppose $X_1, ..., X_n$ are i.i.d. random variables with mgf M_X , with $E_{f_X}[X_i] = \mu$ and $Var_{f_X}[X_i] = \sigma^2 < \infty$.

Then

$$Z_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{\mathfrak{L}} Z \sim N(0, 1)$$

as $n \longrightarrow \infty$, irrespective of the distribution of the X_i s.

That is, the distribution of Z_n tends to a *standard normal* distribution as n tends to infinity.

<ロ> < 母> < 目> < 目> < 目> < 日</p>

Session 1: Probabilistic and Statistical Modelling 47/61

Regression Modelling

Suppose we have

- ► response Y
- predictors X_1, X_2, \ldots, X_D

we want to explain the variation in Y via a function of X_1, X_2, \ldots, X_D .

Session 1: Probabilistic and Statistical Modelling 46/61

This result allows us to construct the following approximations:

$$Z_n \stackrel{\sim}{\sim} N(0,1)$$

$$T_n = \sum_{i=1}^n X_i \stackrel{\sim}{\sim} N(n\mu, n\sigma^2)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{\sim}{\sim} N(\mu, \sigma^2/n)$$

・ロト・画・・ヨト・ヨー もんの

Session 1: Probabilistic and Statistical Modelling $\frac{48}{61}$

The observed value of Y can be modelled as

$$Y = g(X,\beta) \circ \epsilon$$

where

- X is a **design matrix** of predictors
- β is $K \times 1$ parameter vector
- ▶ g is some **link** function
- ϵ is a random (residual) error vector
- is a operator defining the measurement error scale (typically additive or multiplicative)

Session 1: Probabilistic and Statistical Modelling

Most typically, \circ is addition, and the random error term is presumed Normally distributed.

The model can be simplified further if it can be written

 $Y = g(X)\beta + \epsilon$

that is, linear in the parameters.

Inference for this model is straightforward. Another common assumption has the elements of error vector ϵ as identically distributed and independent random variables (**homoscedastic**).

Session 1: Probabilistic and Statistical Modelling

51/ 61

Stochastic Processes

Can think of repeated observation of the system X_1, X_2, \ldots ,

- representing a sequence of observations of a process evolving in DISCRETE time usually at fixed, equal intervals.
- representing a sequence of discrete-time observations of a process evolving in CONTINUOUS time

X could be **univariate** or **multivariate**. We wish to use time series analysis to characterize time series and understand structure.

Session 1: Probabilistic and Statistical Modelling $_{50/61}$

All of these simplifying assumptions can be relaxed:

- homoscedasticity (yields GENERALIZED REGRESSION)
- independence (yields MULTIVARIATE REGRESSION)
- Inearity (yields NON-LINEAR REGRESSION)
- normality (yields GENERALIZED LINEAR MODELLING)

Session 1: Probabilistic and Statistical Modelling $_{52/\ 61}$

Possibilities

State (possible values of X)	Time	Notation
Continuous	Continuous	X(t)
Continuous	Discrete	X_t
Discrete	Continuous	
Discrete	Discrete	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへの

Session 1: Probabilistic and Statistical Modelling 53/ 61

Denote the process by $\{X_t\}$. For fixed t, X_t is a random variable (r.v.), and hence there is an associated cumulative distribution function (cdf):

$$F_t(a) = P(X_t \leq a)$$

and

$$E[X_t] = \int_{-\infty}^{\infty} x \, dF_t(x) \equiv \mu_t \qquad Var[X_t] = \int_{-\infty}^{\infty} (x - \mu_t)^2 \, dF_t(x).$$

Session 1: Probabilistic and Statistical Modelling

COMPLETE/STRONG/STRICT stationarity

 $\{X_t\}$ is said to be completely stationary if, for all $n \ge 1$, for any

 $t_1, t_2, \ldots, t_n \in T$

and for any au such that

$$t_1+\tau, t_2+\tau, \ldots, t_n+\tau \in T$$

are also contained in the index set, the joint cdf of $\{X_{t_1}, X_{t_2}, \ldots, X_{t_n}\}$ is the same as that of $\{X_{t_1+\tau}, X_{t_2+\tau}, \ldots, X_{t_n+\tau}\}$ i.e.,

 $F_{t_1,t_2,...,t_n}(a_1,a_2,...,a_n) = F_{t_1+\tau,t_2+\tau,...,t_n+\tau}(a_1,a_2,...,a_n),$

so that the probabilistic structure of a completely stationary process is invariant under a shift in time.

・ロト ・西ト ・ヨト ・ヨー シック

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ● のへの

Session 1: Probabilistic and Statistical Modelling $_{54/61}$

We are interested in the relationships between the various r.v.s that form the process. For example, for any t_1 and $t_2 \in T$,

$$F_{t_1,t_2}(a_1,a_2) = P(X_{t_1} \le a_1, X_{t_2} \le a_2)$$

gives the bivariate cdf. More generally for any $t_1, t_2, \ldots, t_n \in T$,

$$F_{t_1,t_2,...,t_n}(a_1,a_2,...,a_n) = P(X_{t_1} \le a_1,...,X_{t_n} \le a_n)$$

We consider the subclass of stationary processes.

▲□▶▲圖▶▲圖▶▲圖▶ ▲□ ◆ ◎▲

Session 1: Probabilistic and Statistical Modelling $_{\rm 56/\;61}$

SECOND-ORDER/WEAK/COVARIANCE stationarity

 $\{X_t\}$ is said to be second-order stationary if, for all $n \ge 1$, for any

$$t_1, t_2, \ldots, t_n \in T$$

and for any τ such that $t_1 + \tau, t_2 + \tau, \ldots, t_n + \tau \in T$ are also contained in the index set, all the joint moments of orders 1 and 2 of $\{X_{t_1}, X_{t_2}, \ldots, X_{t_n}\}$ exist and are finite. Most importantly, these moments are identical to the corresponding joint moments of $\{X_{t_1+\tau}, X_{t_2+\tau}, \ldots, X_{t_n+\tau}\}$. Hence,

$$E[X_t] \equiv \mu$$
 $Var[X_t] \equiv \sigma^2$ $(= E[X_t^2] - \mu^2),$

are constants independent of t.

Session 1: Probabilistic and Statistical Modelling 59/ 61

NOTES:

- $\blacktriangleright \tau$ is called the lag.
- ► $s_0 = \sigma^2$ and $s_{-\tau} = s_{\tau}$.
- \blacktriangleright The autocorrelation sequence (acs) is given by

$$\rho_{\tau} = \frac{s_{\tau}}{s_0} = \frac{Cov\left[X_t, X_{t+\tau}\right]}{\sigma^2}$$

• Since ρ_{τ} is a correlation coefficient, $|s_{\tau}| \leq s_0$.

Session 1: Probabilistic and Statistical Modelling 58/61

Hence, $E[X_{t_1}X_{t_2}]$ is a function of the absolute difference $|t_2 - t_1|$ only, similarly, for the **covariance** between $X_{t_1} \& X_{t_2}$:

$$Cov [X_{t_1}, X_{t_2}] = E [(X_{t_1} - \mu)(X_{t_2} - \mu)]$$
$$= E [X_{t_1}X_{t_2}] - \mu^2.$$

For a discrete time second-order stationary process $\{X_t\}$ we define the **autocovariance sequence** (acvs) by

$$s_{ au} \equiv Cov [X_t, X_{t+ au}]$$

= $Cov [X_0, X_{ au}].$

Session 1: Probabilistic and Statistical Modelling $_{\rm 60/\;61}$

► The variance-covariance matrix of equispaced X's, (X₁, X₂,..., X_N)^T has the form

<i>s</i> 0	s_1		s _{N-2}		1
<i>s</i> ₁	<i>s</i> ₀		<i>s</i> _{N-3}	<i>s</i> _{N-2}	
÷		·			
<i>s</i> _{N-2}	<i>s</i> _{N-3}		<i>s</i> ₀	s_1	
<i>s</i> _{N-1}	<i>s</i> _{N-2}		s_1	<i>s</i> ₀	

which is known as a symmetric Toeplitz matrix – all elements on a diagonal are the same. Note the above matrix has only N unique elements, $s_0, s_1, \ldots, s_{N-1}$.

◆□▶ ◆圖▶ ◆目▶ ◆目▶ ○目 ● 今々で

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A stochastic process {X_t} is called Gaussian if, for all n ≥ 1 and for any t₁, t₂,..., t_n contained in the index set, the joint cdf of X_{t1}, X_{t2},..., X_{tn} is multivariate Gaussian.
- 2nd-order stationary Gaussian \Rightarrow complete stationarity
 - follows as the multivariate Normal distribution is completely characterized by 1st and 2nd moments
 - not true in general.
- Complete stationarity \Rightarrow 2nd-order stationary in general.

・ロト・(型ト・(目下・)目・ のへの