Statistical Inference and Methods

David A. Stephens

Department of Mathematics Imperial College London

d.stephens@imperial.ac.uk
http://stats.ma.ic.ac.uk/~das01/

6th December 2005

Objectives

- Data Analyses
- Methods of Statistical Inference
- Classes of Models
- Statistical Computation Techniques

Data Analyses

- Summary/exploratory
- Inferential
- Predictive

æ

∃ >

< ∃ >

Methods of Statistical Inference

- Frequentist
- Likelihood
- Quasi-likelihood
- Estimating Equations
- Generalized Method of Moments
- Bayesian

Classes of Models

- Univariate, independent
- Multivariate, independent
- Regression
- Generalized Regression
- Univariate, dependent (Time Series)
- Multivariate, dependent

Statistical Computation

- Numerical Methods
- Kalman Filter
- Monte Carlo
- Markov chain Monte Carlo

Outline of Syllabus

David A. Stephens Statistical Inference and Methods

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Session 1

1 Probabilistic and Statistical Modelling

- Forms of Data
- Probability and probability distributions
- Multivariate modelling
- Least-squares and Regression
- Stochastic Processes

2 Inference

- Likelihood theory
- Quasi-likelihood/Estimating Equations
- Generalized Method of Moments
- Bayesian theory

< ∃ >

э

Session 3

3 Time Series Analysis

- ARIMA/Box-Jenkins Modelling
- Forecasting
- Spectral Methods
- Long memory
- Nonstationarity
- Unit roots

4 Multivariate Time Series

- Vector ARIMA
- Cointegration

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Session 5

5 Statistical Computation

- Monte Carlo
- Importance Sampling
- Quasi Monte Carlo
- Markov chain Monte Carlo
- Sequential Monte Carlo

6 Filtering

- Kalman Filter
- Particle Filter

æ

- ∢ ⊒ →

/⊒ > < ∃ >

7 Volatility Modelling

- ARCH/GARCH
- Stochastic volatility
- Multivariate Methods

э

8 Panel Data

• Models for Longitudinal Data

< 同 ▶

- ∢ ≣ ▶

æ

∃ >

Part I

Session 1: Probabilistic Modelling

David A. Stephens Statistical Inference and Methods

▲ 同 ▶ ▲ 目

э

Random Variables Types of Data Important Features Analysis Objectives

17/61

Session 1: Probabilistic and Statistical Modelling

Random quantity denoted X

Probability model denoted $f_X(x; \theta)$ (pdf) or $F_X(x; \theta)$ (cdf)

$$F_X(x) = \int_{-\infty}^x f_X(t;\theta) dt$$

Finite dimensional parameter θ

Data x_1, x_2, \ldots, x_n available

A 3 b

Random Variables **Types of Data** Important Features Analysis Objectives

18/61

Session 1: Probabilistic and Statistical Modelling

Repeated observations of random variables X_1, X_2, \ldots, X_n .

Different assumptions about the data collection mechanisms lead to different probability models.

Crucial assumptions relate to dependencies between the variables.

- 4 同 ト 4 ヨ ト 4 ヨ

Random Variables **Types of Data** Important Features Analysis Objectives

19/61

Session 1: Probabilistic and Statistical Modelling

(a) Scalar random variables, mutually independent

- repeated observation of the same quantity
- observations do not influence/affect each other.
- the random sample assumption
- UNIVARIATE ANALYSIS

(b) Vector random variables, mutually independent

- repeated observation of the same set of quantities or *features*
- observations do not influence/affect each other.
- possible dependence between features
- MULTIVARIATE ANALYSIS

Random Variables **Types of Data** Important Features Analysis Objectives

20/61

Session 1: Probabilistic and Statistical Modelling

(c) Predictor/Response

- repeated observation of the paired variables
- systematic (causal) relationship between variables.
- REGRESSION

(d) Repeated Measures

- small number of repeated observations of the same set of quantities on the same experimental units
- possible dependence between repeated observations
- MULTIVARIATE ANALYSIS

Random Variables **Types of Data** Important Features Analysis Objectives

21/61

Session 1: Probabilistic and Statistical Modelling

(e) Scalar, repeated observation, time-ordered

- long sequences of repeated measurement of single quantity.
- time ordering structures dependence between variables
- TIME SERIES ANALYSIS

(f) Vector-valued, repeated observation, time-ordered

- long sequence of vector observation
- time ordering structures dependence between variables
- MULTIVARIATE TIME SERIES

Random Variables Types of Data Important Features Analysis Objectives

22/61

Session 1: Probabilistic and Statistical Modelling

- Dependence
- Latent Structure
- Periodicity
- System changes
- Nonstationarity

A ►

Random Variables Types of Data Important Features Analysis Objectives

23/61

Session 1: Probabilistic and Statistical Modelling

Objectives of data analysis:

- Summary
- Comparison
- Inference
- Testing
- Model Assessment
- Prediction/Forecasting

Random Variables Types of Data Important Features Analysis Objectives

24/61

Session 1: Probabilistic and Statistical Modelling

Why do we bother with probabilistic modelling ?

- because we are forced to deal with *uncertainty* due the *lack* of *perfect information*
- because we wish to represent the uncertainty in our analyses correctly
- because we wish to act in a *coherent* fashion in combining or updating our knowledge or opinion
- because we want to carry out *prediction*

Probability is the only framework that offers coherent treatment of uncertainty.

Univariate Distributions Multivariate Distributions Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling

25/61

Probability Models: Common Univariate Distributions

- Discrete distributions
 - Binomial
 - Geometric
 - Poisson
- Continuous distributions
 - Exponential
 - Gamma (Chisquared)
 - Beta
 - Normal
 - Student-t
 - Fisher-F

Univariate Distributions Multivariate Distributions Central Limit Theorem

26/61

Session 1: Probabilistic and Statistical Modelling

Binomial distribution

$$f_X(x;\theta) = {n \choose x} \theta^x (1-\theta)^{n-x} \qquad x = 0, 1, 2, \dots, n$$

for parameter $\theta > 0$, and positive integer n > 0.

Number of successes in n independent and identical 0/1 trials.

▲ 同 ▶ → 三 ▶

Univariate Distributions Multivariate Distributions Central Limit Theorem

27/61

Session 1: Probabilistic and Statistical Modelling

Poisson distribution

$$f_X(x;\lambda) = \frac{\exp\{-\lambda\}\lambda^x}{x!} \qquad x = 0, 1, 2, \dots$$

for parameter $\lambda > 0$.

Most common model for count data.

3

Univariate Distributions Multivariate Distributions Central Limit Theorem

28/61

Session 1: Probabilistic and Statistical Modelling

Gamma distribution

$$f_X(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp\{-\beta x\} \qquad x > 0$$

for parameters $\alpha, \beta > 0$, where

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} \exp\{-x\} \, dx = (\alpha-1)\Gamma(\alpha-1).$$

Special Case: if $\alpha = \nu/2$ for positive integer ν , and $\beta = 1/2$,

$$Gamma(\nu/2, 1/2) \equiv Chisquared(\nu)$$

| 4 同 1 4 三 1 4 三 1

Univariate Distributions Multivariate Distributions Central Limit Theorem

29/61

Session 1: Probabilistic and Statistical Modelling

• Normal (Gaussian) distribution

$$f_X(x;\mu,\sigma) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

for parameters μ, σ where $\sigma > 0$.

Most commonly used model for data analysis.

A 10

Univariate Distributions Multivariate Distributions Central Limit Theorem

30/61

Session 1: Probabilistic and Statistical Modelling

Models linked to the Normal:

- Chisquared
- Student-t
- Fisher-F
- Laplace

Distributions linked via transformation.

Univariate Distributions Multivariate Distributions Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling

31/61

Multivariate distributions: versions of

- Binomial (Multinomial)
- Gamma (Multivariate Gamma, Wishart)
- Beta (Dirichlet)
- Normal (Multivariate Normal)
- Student-t

exist.

Univariate Distributions Multivariate Distributions Central Limit Theorem

32/61

Session 1: Probabilistic and Statistical Modelling

Multivariate Normal Distribution

Suppose that vector random variable $\mathbf{X} = (X_1, X_2, \dots, X_k)^T$ has a multivariate normal distribution with pdf given by

$$f_{\mathbf{X}}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \left(\frac{1}{2\pi}\right)^{k/2} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

where Σ is the $k \times k$ (positive definite, non-singular) variance-covariance matrix

Consider the case where the expected value μ is the $k \times 1$ zero vector; results for the general case are easily available by transformation.

Univariate Distributions Multivariate Distributions Central Limit Theorem

33/61

Session 1: Probabilistic and Statistical Modelling

Consider partitioning **X** into two components X_1 and X_2 of dimensions d and k - d respectively, that is,

$$\mathbf{X} = \left[egin{array}{c} \mathbf{X}_1 \ \mathbf{X}_2 \end{array}
ight]$$

We attempt to deduce

- (a) the marginal distribution of X_1 , and
- (b) the conditional distribution of X_2 given that $X_1 = x_1$.

Univariate Distributions Multivariate Distributions Central Limit Theorem

34/61

Session 1: Probabilistic and Statistical Modelling

First, write

$$\Sigma = \left[egin{array}{cc} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{array}
ight]$$

where Σ_{11} is $d \times d$, Σ_{22} is $(k - d) \times (k - d)$, $\Sigma_{21} = \Sigma_{12}^{\mathsf{T}}$, and

$$\Sigma^{-1} = V = \left[egin{array}{cc} V_{11} & V_{12} \ V_{21} & V_{22} \end{array}
ight]$$

so that $\Sigma V = I_k$ (I_r is the $r \times r$ identity matrix) gives

$$\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix} = \begin{bmatrix} I_d & 0 \\ 0 & I_{k-d} \end{bmatrix}$$

Univariate Distributions Multivariate Distributions Central Limit Theorem

35/61

Session 1: Probabilistic and Statistical Modelling

$$\Sigma_{11}V_{11} + \Sigma_{12}V_{21} = I_d \tag{1}$$

$$\Sigma_{11}V_{12} + \Sigma_{12}V_{22} = 0 \tag{2}$$

$$\Sigma_{21}V_{11} + \Sigma_{22}V_{21} = 0 \tag{3}$$

$$\Sigma_{21}V_{12} + \Sigma_{22}V_{22} = I_{k-d}.$$
 (4)

・ロト ・同ト ・ヨト ・ヨト

From the multivariate normal pdf, we can re-express the term in the exponent as

$$\mathbf{x}^{\mathsf{T}} \Sigma^{-1} \mathbf{x} = \mathbf{x}_{1}^{\mathsf{T}} V_{11} \mathbf{x}_{1} + \mathbf{x}_{1}^{\mathsf{T}} V_{12} \mathbf{x}_{2} + \mathbf{x}_{2}^{\mathsf{T}} V_{21} \mathbf{x}_{1} + \mathbf{x}_{2}^{\mathsf{T}} V_{22} \mathbf{x}_{2}.$$
 (5)

Univariate Distributions Multivariate Distributions Central Limit Theorem

36/61

Session 1: Probabilistic and Statistical Modelling

We can write

$$\mathbf{x}^{\mathsf{T}} \Sigma^{-1} \mathbf{x} = (\mathbf{x}_2 - \mathbf{m})^{\mathsf{T}} M(\mathbf{x}_2 - \mathbf{m}) + \mathbf{c}$$
 (6)

and by comparing with equation (5) we can deduce that, for quadratic terms in \mathbf{x}_2 ,

$$\mathbf{x}_2^{\mathsf{T}} V_{22} \mathbf{x}_2 = \mathbf{x}_2^{\mathsf{T}} M \mathbf{x}_2 \qquad \therefore \qquad M = V_{22} \tag{7}$$

for linear terms

$$\mathbf{x}_{2}^{\mathsf{T}} V_{21} \mathbf{x}_{1} = \mathbf{x}_{2}^{\mathsf{T}} M \mathbf{m} \qquad \therefore \qquad \mathbf{m} = V_{22}^{-1} V_{21} \mathbf{x}_{1} \qquad (8)$$

and for constant terms

$$\mathbf{x}_{1}^{\mathsf{T}} V_{11} \mathbf{x}_{1} = \mathbf{c} + \mathbf{m}^{\mathsf{T}} M \mathbf{m} \qquad \therefore \qquad \mathbf{c} = \mathbf{x}_{1}^{\mathsf{T}} (V_{11} - V_{21}^{\mathsf{T}} V_{22}^{-1} V_{21}) \mathbf{x}_{1}$$

Univariate Distributions Multivariate Distributions Central Limit Theorem

37/61

Session 1: Probabilistic and Statistical Modelling

That is

$$\mathbf{x}^{\mathsf{T}} \Sigma^{-1} \mathbf{x} = (\mathbf{x}_{2} - V_{22}^{-1} V_{21} \mathbf{x}_{1})^{\mathsf{T}} V_{22} (\mathbf{x}_{2} - V_{22}^{-1} V_{21} \mathbf{x}_{1}) + \mathbf{x}_{1}^{\mathsf{T}} (V_{11} - V_{21}^{\mathsf{T}} V_{22}^{-1} V_{21}) \mathbf{x}_{1}, \qquad (10)$$

a sum of two terms, where the first can be interpreted as a function of \mathbf{x}_2 , given \mathbf{x}_1 , and the second is a function of \mathbf{x}_1 only.

Univariate Distributions Multivariate Distributions Central Limit Theorem

38/61

Session 1: Probabilistic and Statistical Modelling

Hence

 $f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{X}_2|\mathbf{X}_1}(\mathbf{x}_2|\mathbf{x}_1)f_{\mathbf{X}_1}(\mathbf{x}_1)$ (11)

where

$$f_{\mathbf{X}_{2}|\mathbf{X}_{1}}(\mathbf{x}_{2}|\mathbf{x}_{1}) \propto \exp\left\{-\frac{1}{2}(\mathbf{x}_{2} - V_{22}^{-1}V_{21}\mathbf{x}_{1})^{\mathsf{T}}V_{22}(\mathbf{x}_{2} - V_{22}^{-1}V_{21}\mathbf{x}_{1})\right\}$$
(12)

giving that

$$\mathbf{X}_{2}|\mathbf{X}_{1} = \mathbf{x}_{1} \sim \mathcal{N}\left(V_{22}^{-1}V_{21}\mathbf{x}_{1}, V_{22}^{-1}\right)$$
(13)

A 10

A B + A B +

Univariate Distributions Multivariate Distributions Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling 39/61

and

$$f_{\mathbf{X}_{1}}(\mathbf{x}_{1}) \propto \exp\left\{-\frac{1}{2}\mathbf{x}_{1}^{\mathsf{T}}(V_{11}-V_{21}^{\mathsf{T}}V_{22}^{-1}V_{21})\mathbf{x}_{1}\right\}$$
(14)

giving that

$$\mathbf{X}_{1} \sim N\left(0, (V_{11} - V_{21}^{\mathsf{T}} V_{22}^{-1} V_{21})^{-1}\right).$$
(15)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Univariate Distributions Multivariate Distributions Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling

40/61

But, from equation (2), $\Sigma_{12} = -\Sigma_{11}V_{12}V_{22}^{-1}$, and then from equation (1), substituting in Σ_{12} ,

$$\Sigma_{11}V_{11} - \Sigma_{11}V_{12}V_{22}^{-1}V_{21} = I_d$$

so that

$$\Sigma_{11} = (V_{11} - V_{12}V_{22}^{-1}V_{21})^{-1} = (V_{11} - V_{21}^{\mathsf{T}}V_{22}^{-1}V_{21})^{-1}.$$

Hence

$$\boxed{\mathbf{X}_{1} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{11}),} \tag{16}$$

that is, we can extract the Σ_{11} block of Σ to define the marginal variance-covariance matrix of X_1 .

Univariate Distributions Multivariate Distributions Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling

41/61

From equation (2), $V_{12} = -\Sigma_{11}^{-1}\Sigma_{12}V_{22}$, and then from equation (4), substituting in V_{12}

$$-\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}V_{22} + \Sigma_{22}V_{22} = I_{k-d}$$

so that

$$V_{22}^{-1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} = \Sigma_{22} - \Sigma_{12}^{\mathsf{T}} \Sigma_{11}^{-1} \Sigma_{12}.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Univariate Distributions Multivariate Distributions Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling

Finally, from equation (2), taking transposes on both sides, we have that $V_{21}\Sigma_{11} + V_{22}\Sigma_{21} = 0$. Then pre-multiplying by V_{22}^{-1} , and post-multiplying by Σ_{11}^{-1} , we have

$$V_{22}^{-1}V_{21} + \Sigma_{21}\Sigma_{11}^{-1} = 0 \qquad \therefore \qquad V_{22}^{-1}V_{21} = -\Sigma_{21}\Sigma_{11}^{-1},$$

so we have, substituting into equation (13), that

$$\mathbf{X}_{2}|\mathbf{X}_{1} = \mathbf{x}_{1} \ \sim N\left(-\Sigma_{21}\Sigma_{11}^{-1}\mathbf{x}_{1}, \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\right).$$
(17)

Univariate Distributions Multivariate Distributions Central Limit Theorem

43/61

Session 1: Probabilistic and Statistical Modelling

Summary

Any marginal, and any conditional distribution of a multivariate normal joint distribution is also multivariate normal.

These results are very important in *regression modelling* to allow study of properties of estimators and predictors.

Univariate Distributions Multivariate Distributions Central Limit Theorem

44/61

Session 1: Probabilistic and Statistical Modelling

The Central Limit Theorem

The Normal distribution is commonly used in statistical calculations to approximate the distribution of sum random variables. For example, common estimators include the sample mean \overline{X} and sample variance s^2

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \qquad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

The Central Limit Theorem Characterizes the distribution of such variables (under certain regularity conditions)

Univariate Distributions Multivariate Distributions Central Limit Theorem

Session 1: Probabilistic and Statistical Modelling

45/61

THEOREM (Lindeberg-Lévy)

Suppose $X_1, ..., X_n$ are i.i.d. random variables with mgf M_X , with $E_{f_X}[X_i] = \mu$ and $Var_{f_X}[X_i] = \sigma^2 < \infty$.

Then

$$Z_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{\mathfrak{L}} Z \sim N(0, 1)$$

as $n \longrightarrow \infty$, irrespective of the distribution of the X_i s.

That is, the distribution of Z_n tends to a standard normal distribution as n tends to infinity.

- 4 同 6 4 日 6 4 日 6

Univariate Distributions Multivariate Distributions Central Limit Theorem

46/61

Session 1: Probabilistic and Statistical Modelling

This result allows us to construct the following approximations:

 $Z_n \sim N(0,1)$

$$T_n = \sum_{i=1}^n X_i \quad \stackrel{\frown}{\sim} \quad N(n\mu, n\sigma^2)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \stackrel{\cdot}{\sim} \quad N(\mu, \sigma^2/n)$$

- 4 同 6 4 日 6 4 日 6

Regression Modelling

47/61

Session 1: Probabilistic and Statistical Modelling

Regression Modelling

Suppose we have

- response Y
- predictors X_1, X_2, \ldots, X_D

we want to explain the variation in Y via a function of X_1, X_2, \ldots, X_D .

Regression Modelling

48/61

Session 1: Probabilistic and Statistical Modelling

The observed value of Y can be modelled as

$$Y = g(X,\beta) \circ \epsilon$$

where

- X is a **design matrix** of predictors
- β is $K \times 1$ parameter vector
- g is some **link** function
- ϵ is a random (residual) error vector
- • is a operator defining the measurement error scale (typically additive or multiplicative)

Regression Modelling

49/61

Session 1: Probabilistic and Statistical Modelling

Most typically, \circ is addition, and the random error term is presumed Normally distributed.

The model can be simplified further if it can be written

$$Y = g(X)\beta + \epsilon$$

that is, **linear** in the parameters.

Inference for this model is straightforward. Another common assumption has the elements of error vector ϵ as identically distributed and independent random variables (**homoscedastic**).

Regression Modelling

50/61

Session 1: Probabilistic and Statistical Modelling

All of these simplifying assumptions can be relaxed:

- homoscedasticity (yields GENERALIZED REGRESSION)
- independence (yields MULTIVARIATE REGRESSION)
- linearity (yields NON-LINEAR REGRESSION)
- normality (yields GENERALIZED LINEAR MODELLING)

Process Descriptior Stationarity

51/61

Session 1: Probabilistic and Statistical Modelling

Stochastic Processes

Can think of repeated observation of the system $X_1, X_2, \ldots,$

- representing a sequence of observations of a process evolving in DISCRETE time usually at fixed, equal intervals.
- representing a sequence of discrete-time observations of a process evolving in CONTINUOUS time

X could be **univariate** or **multivariate**. We wish to use time series analysis to characterize time series and understand structure.

Process Descriptior Stationarity

52/61

Session 1: Probabilistic and Statistical Modelling

Possibilities

State (possible values of X)	Time	Notation
Continuous	Continuous	X(t)
Continuous	Discrete	X_t
Discrete	Continuous	
Discrete	Discrete	

(日) (同) (三) (三)

э

1

Process Description Stationarity

53/61

Session 1: Probabilistic and Statistical Modelling

Denote the process by $\{X_t\}$. For fixed t, X_t is a random variable (r.v.), and hence there is an associated cumulative distribution function (cdf):

$$F_t(a) = P(X_t \leq a),$$

and

$$E[X_t] = \int_{-\infty}^{\infty} x \, dF_t(x) \equiv \mu_t \qquad \text{Var}[X_t] = \int_{-\infty}^{\infty} (x - \mu_t)^2 \, dF_t(x).$$

Process Description Stationarity

54/61

Session 1: Probabilistic and Statistical Modelling

We are interested in the relationships between the various r.v.s that form the process. For example, for any t_1 and $t_2 \in T$,

$$F_{t_1,t_2}(a_1,a_2) = P(X_{t_1} \le a_1, X_{t_2} \le a_2)$$

gives the bivariate cdf. More generally for any $t_1, t_2, \ldots, t_n \in T$,

$$\mathcal{F}_{t_1,t_2,\ldots,t_n}(a_1,a_2,\ldots,a_n)=\mathcal{P}(X_{t_1}\leq a_1,\ldots,X_{t_n}\leq a_n)$$

We consider the subclass of stationary processes.

Process Description Stationarity

55/61

Session 1: Probabilistic and Statistical Modelling

COMPLETE/STRONG/STRICT stationarity $\{X_t\}$ is said to be completely stationary if, for all $n \ge 1$, for any

 $t_1, t_2, \ldots, t_n \in T$

and for any τ such that

$$t_1+\tau, t_2+\tau, \ldots, t_n+\tau \in T$$

are also contained in the index set, the joint cdf of $\{X_{t_1}, X_{t_2}, \ldots, X_{t_n}\}$ is the same as that of $\{X_{t_1+\tau}, X_{t_2+\tau}, \ldots, X_{t_n+\tau}\}$ i.e.,

$$F_{t_1,t_2,...,t_n}(a_1,a_2,...,a_n) = F_{t_1+\tau,t_2+\tau,...,t_n+\tau}(a_1,a_2,...,a_n),$$

so that the probabilistic structure of a completely stationary process is invariant under a shift in time.

Process Description Stationarity

Session 1: Probabilistic and Statistical Modelling

SECOND-ORDER/WEAK/COVARIANCE stationarity

 $\{X_t\}$ is said to be second-order stationary if, for all $n \ge 1$, for any

$$t_1, t_2, \ldots, t_n \in T$$

and for any τ such that $t_1 + \tau, t_2 + \tau, \ldots, t_n + \tau \in T$ are also contained in the index set, all the joint moments of orders 1 and 2 of $\{X_{t_1}, X_{t_2}, \ldots, X_{t_n}\}$ exist and are finite. Most importantly, these moments are identical to the corresponding joint moments of $\{X_{t_1+\tau}, X_{t_2+\tau}, \ldots, X_{t_n+\tau}\}$. Hence,

$$E[X_t] \equiv \mu$$
 $Var[X_t] \equiv \sigma^2$ $(= E[X_t^2] - \mu^2),$

are constants independent of t.

伺 ト く ヨ ト く ヨ ト

Process Description Stationarity

57/61

Session 1: Probabilistic and Statistical Modelling

If we let
$$\tau = -t_1$$
,

$$E[X_{t_1}X_{t_2}] = E[X_{t_1+\tau}X_{t_2+\tau}] = E[X_0X_{t_2-t_1}],$$

and with $\tau = -t_2$,

$$E[X_{t_1}X_{t_2}] = E[X_{t_1+\tau}X_{t_2+\tau}] = E[X_{t_1-t_2}X_0].$$

(日) (同) (三) (三)

э

Process Description Stationarity

58/61

Session 1: Probabilistic and Statistical Modelling

Hence, $E[X_{t_1}X_{t_2}]$ is a function of the absolute difference $|t_2 - t_1|$ only, similarly, for the **covariance** between $X_{t_1} \& X_{t_2}$:

Cov
$$[X_{t_1}, X_{t_2}] = E[(X_{t_1} - \mu)(X_{t_2} - \mu)]$$

$$= E[X_{t_1}X_{t_2}] - \mu^2.$$

For a discrete time second-order stationary process $\{X_t\}$ we define the **autocovariance sequence** (acvs) by

$$s_{ au} \equiv Cov\left[X_t, X_{t+ au}
ight]$$

$$=$$
 Cov $[X_0, X_{\tau}]$.

Process Description Stationarity

59/61

Session 1: Probabilistic and Statistical Modelling

NOTES:

• τ is called the lag.

•
$$s_0 = \sigma^2$$
 and $s_{-\tau} = s_{\tau}$.

• The autocorrelation sequence (acs) is given by

$$\rho_{\tau} = \frac{s_{\tau}}{s_0} = \frac{Cov\left[X_t, X_{t+\tau}\right]}{\sigma^2}$$

• Since ρ_{τ} is a correlation coefficient, $|s_{\tau}| \leq s_0$.

- ₹ 🖬 🕨

Process Description Stationarity

60/61

Session 1: Probabilistic and Statistical Modelling

• The variance-covariance matrix of equispaced X's, $(X_1, X_2, \ldots, X_N)^{\mathsf{T}}$ has the form

 $\begin{bmatrix} s_0 & s_1 & \dots & s_{N-2} & s_{N-1} \\ s_1 & s_0 & \dots & s_{N-3} & s_{N-2} \\ \vdots & & \ddots & & \\ s_{N-2} & s_{N-3} & \dots & s_0 & s_1 \\ s_{N-1} & s_{N-2} & \dots & s_1 & s_0 \end{bmatrix}$

which is known as a symmetric Toeplitz matrix – all elements on a diagonal are the same. Note the above matrix has only N unique elements, $s_0, s_1, \ldots, s_{N-1}$.

Process Description Stationarity

61/61

Session 1: Probabilistic and Statistical Modelling

- A stochastic process $\{X_t\}$ is called Gaussian if, for all $n \ge 1$ and for any t_1, t_2, \ldots, t_n contained in the index set, the joint cdf of $X_{t_1}, X_{t_2}, \ldots, X_{t_n}$ is multivariate Gaussian.
- 2nd-order stationary Gaussian \Rightarrow complete stationarity
 - follows as the multivariate Normal distribution is completely characterized by 1st and 2nd moments
 - not true in general.
- Complete stationarity \Rightarrow 2nd-order stationary in general.