Statistical Inference and Methods

David A. Stephens

Department of Mathematics
Imperial College London
d.stephens@imperial.ac.uk
http://stats.ma.ic.ac.uk/~das01/

6th December 2005

Objectives

- Data Analyses
- Methods of Statistical Inference
- Classes of Models
- Statistical Computation Techniques

Data Analyses

- Summary/exploratory
- Inferential
- Predictive

Methods of Statistical Inference

- Frequentist
- Likelihood
- Quasi-likelihood
- Estimating Equations
- Generalized Method of Moments
- Bayesian

Classes of Models

- Univariate, independent
- Multivariate, independent
- Regression
- Generalized Regression
- Univariate, dependent (Time Series)
- Multivariate, dependent

Statistical Computation

- Numerical Methods
- Kalman Filter
- Monte Carlo
- Markov chain Monte Carlo

Outline of Syllabus

Session 1

1 Probabilistic and Statistical Modelling

- Forms of Data
- Probability and probability distributions
- Multivariate modelling
- Least-squares and Regression
- Stochastic Processes

Session 2

2 Inference

- Likelihood theory
- Quasi-likelihood/Estimating Equations
- Generalized Method of Moments
- Bayesian theory

Session 3

3 Time Series Analysis

- ARIMA/Box-Jenkins Modelling
- Forecasting
- Spectral Methods
- Long memory
- Nonstationarity
- Unit roots

Session 4

4 Multivariate Time Series

- Vector ARIMA
- Cointegration

Session 5

5 Statistical Computation

- Monte Carlo
- Importance Sampling
- Quasi Monte Carlo
- Markov chain Monte Carlo
- Sequential Monte Carlo

Session 6

6 Filtering

- Kalman Filter
- Particle Filter

Session 7

7 Volatility Modelling

- ARCH/GARCH
- Stochastic volatility
- Multivariate Methods

Session 8

8 Panel Data

- Models for Longitudinal Data

Part I

Session 1: Probabilistic Modelling

Random variables
Probability Models

Session 1: Probabilistic and Statistical Modelling

Random quantity denoted X
Probability model denoted $f_{X}(x ; \theta)(p d f)$ or $F_{X}(x ; \theta)(c d f)$

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(t ; \theta) d t
$$

Finite dimensional parameter θ
Data $x_{1}, x_{2}, \ldots, x_{n}$ available

Random variables

Random Variables

Session 1: Probabilistic and Statistical Modelling

Repeated observations of random variables $X_{1}, X_{2}, \ldots, X_{n}$.
Different assumptions about the data collection mechanisms lead to different probability models.

Crucial assumptions relate to dependencies between the variables.

Session 1: Probabilistic and Statistical Modelling

(a) Scalar random variables, mutually independent

- repeated observation of the same quantity
- observations do not influence/affect each other.
- the random sample assumption
- UNIVARIATE ANALYSIS
(b) Vector random variables, mutually independent
- repeated observation of the same set of quantities or features
- observations do not influence/affect each other.
- possible dependence between features
- MULTIVARIATE ANALYSIS

Random variables

Session 1: Probabilistic and Statistical Modelling

(c) Predictor/Response

- repeated observation of the paired variables
- systematic (causal) relationship between variables.
- REGRESSION
(d) Repeated Measures
- small number of repeated observations of the same set of quantities on the same experimental units
- possible dependence between repeated observations
- MULTIVARIATE ANALYSIS

Random variables
Probability Models

Session 1: Probabilistic and Statistical Modelling

(e) Scalar, repeated observation, time-ordered

- long sequences of repeated measurement of single quantity.
- time ordering structures dependence between variables
- TIME SERIES ANALYSIS
(f) Vector-valued, repeated observation, time-ordered
- long sequence of vector observation
- time ordering structures dependence between variables
- MULTIVARIATE TIME SERIES

Random Variables

Session 1: Probabilistic and Statistical Modelling

- Dependence
- Latent Structure
- Periodicity
- System changes
- Nonstationarity

Random variables
Probability Models

Random Variables

Session 1: Probabilistic and Statistical Modelling

Objectives of data analysis:

- Summary
- Comparison
- Inference
- Testing
- Model Assessment
- Prediction/Forecasting

Session 1: Probabilistic and Statistical Modelling

Why do we bother with probabilistic modelling ?

- because we are forced to deal with uncertainty due the lack of perfect information
- because we wish to represent the uncertainty in our analyses correctly
- because we wish to act in a coherent fashion in combining or updating our knowledge or opinion
- because we want to carry out prediction

Probability is the only framework that offers coherent treatment of uncertainty.

Session 1: Probabilistic and Statistical Modelling

Probability Models: Common Univariate Distributions

- Discrete distributions
- Binomial
- Geometric
- Poisson
- Continuous distributions
- Exponential
- Gamma (Chisquared)
- Beta
- Normal
- Student-t
- Fisher-F

Session 1: Probabilistic and Statistical Modelling

- Binomial distribution

$$
f_{X}(x ; \theta)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \quad x=0,1,2, \ldots, n
$$

for parameter $\theta>0$, and positive integer $n>0$.
Number of successes in n independent and identical $0 / 1$ trials.

Session 1: Probabilistic and Statistical Modelling

- Poisson distribution

$$
f_{X}(x ; \lambda)=\frac{\exp \{-\lambda\} \lambda^{x}}{x!} \quad x=0,1,2, \ldots
$$

for parameter $\lambda>0$.
Most common model for count data.

Session 1: Probabilistic and Statistical Modelling

- Gamma distribution

$$
f_{X}(x ; \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp \{-\beta x\} \quad x>0
$$

for parameters $\alpha, \beta>0$, where

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} \exp \{-x\} d x=(\alpha-1) \Gamma(\alpha-1)
$$

Special Case: if $\alpha=\nu / 2$ for positive integer ν, and $\beta=1 / 2$,

$$
\operatorname{Gamma}(\nu / 2,1 / 2) \equiv \text { Chisquared }(\nu)
$$

Session 1: Probabilistic and Statistical Modelling

- Normal (Gaussian) distribution

$$
f_{X}(x ; \mu, \sigma)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

for parameters μ, σ where $\sigma>0$.
Most commonly used model for data analysis.

Session 1: Probabilistic and Statistical Modelling

Models linked to the Normal:

- Chisquared
- Student-t
- Fisher-F
- Laplace

Distributions linked via transformation.

Session 1: Probabilistic and Statistical Modelling

Multivariate distributions: versions of

- Binomial (Multinomial)
- Gamma (Multivariate Gamma, Wishart)
- Beta (Dirichlet)
- Normal (Multivariate Normal)
- Student-t
exist.

Session 1: Probabilistic and Statistical Modelling

Multivariate Normal Distribution

Suppose that vector random variable $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{\top}$ has a multivariate normal distribution with pdf given by

$$
f_{\mathbf{x}}(\mathbf{x} ; \boldsymbol{\mu}, \Sigma)=\left(\frac{1}{2 \pi}\right)^{k / 2} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

where Σ is the $k \times k$ (positive definite, non-singular) variance-covariance matrix

Consider the case where the expected value $\boldsymbol{\mu}$ is the $k \times 1$ zero vector; results for the general case are easily available by transformation.

Session 1: Probabilistic and Statistical Modelling

Consider partitioning \mathbf{X} into two components \mathbf{X}_{1} and \mathbf{X}_{2} of dimensions d and $k-d$ respectively, that is,

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{X}_{2}
\end{array}\right]
$$

We attempt to deduce
(a) the marginal distribution of \mathbf{X}_{1}, and
(b) the conditional distribution of \mathbf{X}_{2} given that $\mathbf{X}_{1}=\mathbf{x}_{1}$.

Session 1: Probabilistic and Statistical Modelling

First, write

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

where Σ_{11} is $d \times d, \Sigma_{22}$ is $(k-d) \times(k-d), \Sigma_{21}=\Sigma_{12}^{\top}$, and

$$
\Sigma^{-1}=V=\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]
$$

so that $\sum V=I_{k}$ (I_{r} is the $r \times r$ identity matrix) gives

$$
\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]=\left[\begin{array}{cc}
I_{d} & 0 \\
0 & I_{k-d}
\end{array}\right]
$$

Session 1: Probabilistic and Statistical Modelling

$$
\begin{align*}
& \Sigma_{11} V_{11}+\Sigma_{12} V_{21}=I_{d} \tag{1}\\
& \Sigma_{11} V_{12}+\Sigma_{12} V_{22}=0 \tag{2}\\
& \Sigma_{21} V_{11}+\Sigma_{22} V_{21}=0 \tag{3}\\
& \Sigma_{21} V_{12}+\Sigma_{22} V_{22}=I_{k-d} . \tag{4}
\end{align*}
$$

From the multivariate normal pdf, we can re-express the term in the exponent as

$$
\begin{equation*}
\mathbf{x}^{\top} \Sigma^{-1} \mathbf{x}=\mathbf{x}_{1}^{\top} V_{11} \mathbf{x}_{1}+\mathbf{x}_{1}^{\top} V_{12} \mathbf{x}_{2}+\mathbf{x}_{2}^{\top} V_{21} \mathbf{x}_{1}+\mathbf{x}_{2}^{\top} V_{22} \mathbf{x}_{2} \tag{5}
\end{equation*}
$$

Session 1: Probabilistic and Statistical Modelling

We can write

$$
\begin{equation*}
\mathbf{x}^{\top} \Sigma^{-1} \mathbf{x}=\left(\mathbf{x}_{2}-\mathbf{m}\right)^{\top} M\left(\mathbf{x}_{2}-\mathbf{m}\right)+\mathbf{c} \tag{6}
\end{equation*}
$$

and by comparing with equation (5) we can deduce that, for quadratic terms in \mathbf{x}_{2},

$$
\begin{equation*}
\mathbf{x}_{2}^{\top} V_{22} \mathbf{x}_{2}=\mathbf{x}_{2}^{\top} M \mathbf{x}_{2} \quad \therefore \quad M=V_{22} \tag{7}
\end{equation*}
$$

for linear terms

$$
\begin{equation*}
\mathbf{x}_{2}^{\top} V_{21} \mathbf{x}_{1}=\mathbf{x}_{2}^{\top} M \mathbf{m} \quad \therefore \quad \mathbf{m}=V_{22}^{-1} V_{21} \mathbf{x}_{1} \tag{8}
\end{equation*}
$$

and for constant terms

$$
\begin{equation*}
\mathbf{x}_{1}^{\top} V_{11} \mathbf{x}_{1}=\mathbf{c}+\mathbf{m}^{\top} M \mathbf{m} \quad \therefore \quad \mathbf{c}=\mathbf{x}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right) \mathbf{x}_{1} \tag{9}
\end{equation*}
$$

Session 1: Probabilistic and Statistical Modelling

That is

$$
\begin{gather*}
\mathbf{x}^{\top} \Sigma^{-1} \mathbf{x}=\left(\mathbf{x}_{2}-V_{22}^{-1} V_{21} \mathbf{x}_{1}\right)^{\top} V_{22}\left(\mathbf{x}_{2}-V_{22}^{-1} V_{21} \mathbf{x}_{1}\right) \\
+\mathbf{x}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right) \mathbf{x}_{1} \tag{10}
\end{gather*}
$$

a sum of two terms, where the first can be interpreted as a function of \mathbf{x}_{2}, given \mathbf{x}_{1}, and the second is a function of \mathbf{x}_{1} only.

Session 1: Probabilistic and Statistical Modelling

Hence

$$
\begin{equation*}
f_{\mathbf{X}}(\mathbf{x})=f_{\mathbf{X}_{2} \mid \mathbf{x}_{1}}\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right) f_{\mathbf{x}_{1}}\left(\mathbf{x}_{1}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{\mathbf{X}_{2} \mid \mathbf{x}_{1}}\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right) \propto \exp \left\{-\frac{1}{2}\left(\mathbf{x}_{2}-V_{22}^{-1} V_{21} \mathbf{x}_{1}\right)^{\top} V_{22}\left(\mathbf{x}_{2}-V_{22}^{-1} V_{21} \mathbf{x}_{1}\right)\right\} \tag{12}
\end{equation*}
$$

giving that

$$
\begin{equation*}
\mathbf{x}_{2} \mid \mathbf{X}_{1}=\mathbf{x}_{1} \sim N\left(V_{22}^{-1} V_{21} \mathbf{x}_{1}, V_{22}^{-1}\right) \tag{13}
\end{equation*}
$$

Session 1: Probabilistic and Statistical Modelling

and

$$
\begin{equation*}
f_{\mathbf{X}_{1}}\left(\mathbf{x}_{1}\right) \propto \exp \left\{-\frac{1}{2} \mathbf{x}_{1}^{\top}\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right) \mathbf{x}_{1}\right\} \tag{14}
\end{equation*}
$$

giving that

$$
\begin{equation*}
\mathbf{x}_{1} \sim N\left(0,\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right)^{-1}\right) \tag{15}
\end{equation*}
$$

Session 1: Probabilistic and Statistical Modelling

But, from equation (2), $\Sigma_{12}=-\Sigma_{11} V_{12} V_{22}^{-1}$, and then from equation (1), substituting in Σ_{12},

$$
\Sigma_{11} V_{11}-\Sigma_{11} V_{12} V_{22}^{-1} V_{21}=I_{d}
$$

so that

$$
\Sigma_{11}=\left(V_{11}-V_{12} V_{22}^{-1} V_{21}\right)^{-1}=\left(V_{11}-V_{21}^{\top} V_{22}^{-1} V_{21}\right)^{-1}
$$

Hence

$$
\begin{equation*}
\mathbf{X}_{1} \sim N\left(0, \Sigma_{11}\right) \tag{16}
\end{equation*}
$$

that is, we can extract the Σ_{11} block of Σ to define the marginal variance-covariance matrix of \mathbf{X}_{1}.

Session 1: Probabilistic and Statistical Modelling

From equation (2), $V_{12}=-\Sigma_{11}^{-1} \Sigma_{12} V_{22}$, and then from equation (4), substituting in V_{12}

$$
-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} V_{22}+\Sigma_{22} V_{22}=I_{k-d}
$$

so that

$$
V_{22}^{-1}=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}=\Sigma_{22}-\Sigma_{12}^{\top} \Sigma_{11}^{-1} \Sigma_{12}
$$

Session 1: Probabilistic and Statistical Modelling

Finally, from equation (2), taking transposes on both sides, we have that $V_{21} \Sigma_{11}+V_{22} \Sigma_{21}=0$. Then pre-multiplying by V_{22}^{-1}, and post-multiplying by Σ_{11}^{-1}, we have

$$
V_{22}^{-1} V_{21}+\Sigma_{21} \Sigma_{11}^{-1}=0 \quad \therefore \quad V_{22}^{-1} V_{21}=-\Sigma_{21} \Sigma_{11}^{-1}
$$

so we have, substituting into equation (13), that

$$
\begin{equation*}
\mathbf{X}_{2} \mid \mathbf{X}_{1}=\mathbf{x}_{1} \sim N\left(-\Sigma_{21} \Sigma_{11}^{-1} \mathbf{x}_{1}, \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right) \tag{17}
\end{equation*}
$$

Session 1: Probabilistic and Statistical Modelling

Summary

Any marginal, and any conditional distribution of a multivariate normal joint distribution is also multivariate normal.

These results are very important in regression modelling to allow study of properties of estimators and predictors.

Session 1: Probabilistic and Statistical Modelling

The Central Limit Theorem

The Normal distribution is commonly used in statistical calculations to approximate the distribution of sum random variables. For example, common estimators include the sample mean \bar{X} and sample variance s^{2}

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

The Central Limit Theorem Characterizes the distribution of such variables (under certain regularity conditions)

Session 1: Probabilistic and Statistical Modelling

THEOREM (Lindeberg-Lévy)
Suppose X_{1}, \ldots, X_{n} are i.i.d. random variables with $\mathrm{mgf} M_{X}$, with $E_{f_{X}}\left[X_{i}\right]=\mu$ and $\operatorname{Var}_{f_{X}}\left[X_{i}\right]=\sigma^{2}<\infty$.

Then

$$
Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n \sigma^{2}}} \stackrel{\mathfrak{L}}{\longrightarrow} Z \sim N(0,1)
$$

as $n \longrightarrow \infty$, irrespective of the distribution of the $X_{i} \mathrm{~s}$.
That is, the distribution of Z_{n} tends to a standard normal distribution as n tends to infinity.

Session 1: Probabilistic and Statistical Modelling

This result allows us to construct the following approximations:

$$
\begin{gathered}
Z_{n} \dot{\sim} N(0,1) \\
T_{n}=\sum_{i=1}^{n} X_{i} \quad \dot{\sim} N\left(n \mu, n \sigma^{2}\right) \\
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \dot{\sim} N\left(\mu, \sigma^{2} / n\right)
\end{gathered}
$$

Session 1: Probabilistic and Statistical Modelling

Regression Modelling

Suppose we have

- response Y
- predictors $X_{1}, X_{2}, \ldots, X_{D}$
we want to explain the variation in Y via a function of $X_{1}, X_{2}, \ldots, X_{D}$.

Session 1: Probabilistic and Statistical Modelling

The observed value of Y can be modelled as

$$
Y=g(X, \beta) \circ \epsilon
$$

where

- X is a design matrix of predictors
- β is $K \times 1$ parameter vector
- g is some link function
- ϵ is a random (residual) error vector
- \circ is a operator defining the measurement error scale (typically additive or multiplicative)

Session 1: Probabilistic and Statistical Modelling

Most typically, o is addition, and the random error term is presumed Normally distributed.

The model can be simplified further if it can be written

$$
Y=g(X) \beta+\epsilon
$$

that is, linear in the parameters.
Inference for this model is straightforward. Another common assumption has the elements of error vector ϵ as identically distributed and independent random variables (homoscedastic).

Session 1: Probabilistic and Statistical Modelling

All of these simplifying assumptions can be relaxed:

- homoscedasticity (yields GENERALIZED REGRESSION)
- independence (yields MULTIVARIATE REGRESSION)
- linearity (yields NON-LINEAR REGRESSION)
- normality (yields GENERALIZED LINEAR MODELLING)

Session 1: Probabilistic and Statistical Modelling

Stochastic Processes

Can think of repeated observation of the system X_{1}, X_{2}, \ldots,

- representing a sequence of observations of a process evolving in DISCRETE time usually at fixed, equal intervals.
- representing a sequence of discrete-time observations of a process evolving in continuous time
X could be univariate or multivariate. We wish to use time series analysis to characterize time series and understand structure.

Session 1: Probabilistic and Statistical Modelling

Possibilities

State (possible values of X)	Time	Notation
Continuous	Continuous	$X(t)$
Continuous	Discrete	X_{t}
Discrete	Continuous	
Discrete	Discrete	

Session 1: Probabilistic and Statistical Modelling

Denote the process by $\left\{X_{t}\right\}$. For fixed t, X_{t} is a random variable (r.v.), and hence there is an associated cumulative distribution function (cdf):

$$
F_{t}(a)=P\left(X_{t} \leq a\right)
$$

and
$E\left[X_{t}\right]=\int_{-\infty}^{\infty} x d F_{t}(x) \equiv \mu_{t} \quad \operatorname{Var}\left[X_{t}\right]=\int_{-\infty}^{\infty}\left(x-\mu_{t}\right)^{2} d F_{t}(x)$.

Session 1: Probabilistic and Statistical Modelling

We are interested in the relationships between the various r.v.s that form the process. For example, for any t_{1} and $t_{2} \in T$,

$$
F_{t_{1}, t_{2}}\left(a_{1}, a_{2}\right)=P\left(X_{t_{1}} \leq a_{1}, X_{t_{2}} \leq a_{2}\right)
$$

gives the bivariate cdf. More generally for any $t_{1}, t_{2}, \ldots, t_{n} \in T$,

$$
F_{t_{1}, t_{2}, \ldots, t_{n}}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=P\left(X_{t_{1}} \leq a_{1}, \ldots, X_{t_{n}} \leq a_{n}\right)
$$

We consider the subclass of stationary processes.

Session 1: Probabilistic and Statistical Modelling

COMPLETE/STRONG/STRICT stationarity

$\left\{X_{t}\right\}$ is said to be completely stationary if, for all $n \geq 1$, for any

$$
t_{1}, t_{2}, \ldots, t_{n} \in T
$$

and for any τ such that

$$
t_{1}+\tau, t_{2}+\tau, \ldots, t_{n}+\tau \in T
$$

are also contained in the index set, the joint cdf of $\left\{X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right\}$ is the same as that of $\left\{X_{t_{1}+\tau}, X_{t_{2}+\tau}, \ldots, X_{t_{n}+\tau}\right\}$ i.e.,

$$
F_{t_{1}, t_{2}, \ldots, t_{n}}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=F_{t_{1}+\tau, t_{2}+\tau, \ldots, t_{n}+\tau}\left(a_{1}, a_{2}, \ldots, a_{n}\right),
$$

so that the probabilistic structure of a completely stationary process is invariant under a shift in time.

Session 1: Probabilistic and Statistical Modelling

SECOND-ORDER/WEAK/COVARIANCE stationarity

$\left\{X_{t}\right\}$ is said to be second-order stationary if, for all $n \geq 1$, for any

$$
t_{1}, t_{2}, \ldots, t_{n} \in T
$$

and for any τ such that $t_{1}+\tau, t_{2}+\tau, \ldots, t_{n}+\tau \in T$ are also contained in the index set, all the joint moments of orders 1 and 2 of $\left\{X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right\}$ exist and are finite. Most importantly, these moments are identical to the corresponding joint moments of $\left\{X_{t_{1}+\tau}, X_{t_{2}+\tau}, \ldots, X_{t_{n}+\tau}\right\}$. Hence,

$$
E\left[X_{t}\right] \equiv \mu \quad \operatorname{Var}\left[X_{t}\right] \equiv \sigma^{2} \quad\left(=E\left[X_{t}^{2}\right]-\mu^{2}\right)
$$

are constants independent of t.

Session 1: Probabilistic and Statistical Modelling

If we let $\tau=-t_{1}$,

$$
E\left[X_{t_{1}} X_{t_{2}}\right]=E\left[X_{t_{1}+\tau} X_{t_{2}+\tau}\right]=E\left[X_{0} X_{t_{2}-t_{1}}\right]
$$

and with $\tau=-t_{2}$,

$$
E\left[X_{t_{1}} X_{t_{2}}\right]=E\left[X_{t_{1}+\tau} X_{t_{2}+\tau}\right]=E\left[X_{t_{1}-t_{2}} X_{0}\right]
$$

Session 1: Probabilistic and Statistical Modelling

Hence, $E\left[X_{t_{1}} X_{t_{2}}\right]$ is a function of the absolute difference $\left|t_{2}-t_{1}\right|$ only, similarly, for the covariance between $X_{t_{1}} \& X_{t_{2}}$:

$$
\begin{aligned}
\operatorname{Cov}\left[X_{t_{1}}, X_{t_{2}}\right] & =E\left[\left(X_{t_{1}}-\mu\right)\left(X_{t_{2}}-\mu\right)\right] \\
& =E\left[X_{t_{1}} X_{t_{2}}\right]-\mu^{2}
\end{aligned}
$$

For a discrete time second-order stationary process $\left\{X_{t}\right\}$ we define the autocovariance sequence (acvs) by

$$
\begin{aligned}
s_{\tau} & \equiv \operatorname{Cov}\left[X_{t}, X_{t+\tau}\right] \\
& =\operatorname{Cov}\left[X_{0}, X_{\tau}\right]
\end{aligned}
$$

Session 1: Probabilistic and Statistical Modelling

NOTES:

- τ is called the lag.
- $s_{0}=\sigma^{2}$ and $s_{-\tau}=s_{\tau}$.
- The autocorrelation sequence (acs) is given by

$$
\rho_{\tau}=\frac{s_{\tau}}{s_{0}}=\frac{\operatorname{Cov}\left[X_{t}, X_{t+\tau}\right]}{\sigma^{2}}
$$

- Since ρ_{τ} is a correlation coefficient, $\left|s_{\tau}\right| \leq s_{0}$.

Session 1: Probabilistic and Statistical Modelling

- The variance-covariance matrix of equispaced X 's, $\left(X_{1}, X_{2}, \ldots, X_{N}\right)^{\top}$ has the form

$$
\left[\begin{array}{ccccc}
s_{0} & s_{1} & \ldots & s_{N-2} & s_{N-1} \\
s_{1} & s_{0} & \ldots & s_{N-3} & s_{N-2} \\
\vdots & & \ddots & & \\
s_{N-2} & s_{N-3} & \cdots & s_{0} & s_{1} \\
s_{N-1} & s_{N-2} & \cdots & s_{1} & s_{0}
\end{array}\right]
$$

which is known as a symmetric Toeplitz matrix - all elements on a diagonal are the same. Note the above matrix has only N unique elements, $s_{0}, s_{1}, \ldots, s_{N-1}$.

Session 1: Probabilistic and Statistical Modelling

- A stochastic process $\left\{X_{t}\right\}$ is called Gaussian if, for all $n \geq 1$ and for any $t_{1}, t_{2}, \ldots, t_{n}$ contained in the index set, the joint cdf of $X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}$ is multivariate Gaussian.
- 2nd-order stationary Gaussian \Rightarrow complete stationarity
- follows as the multivariate Normal distribution is completely characterized by 1st and 2nd moments
- not true in general.
- Complete stationarity $\Rightarrow 2$ nd-order stationary in general.

