Let T_{0} and T_{1} be successive time instants, $T_{0}<T_{1}$, and let $B\left(T_{0}, T_{1}\right)$ be the price at time T_{0} of a zero Coupon bond maturing at tame T_{1}. 50 this bond hos value 1 at time T_{1}. The existence of this bond implies an interest rate for the period T_{0} to T_{1}. A unit of cork. invested in the bond at time T_{0} (bungs $\frac{1}{8(5, T)}$ bonds and so) matures to jerid $\frac{1}{B\left(T o, T_{1}\right)}$ in cash at time T_{1}. We can write $L\left(T_{0}\right)$ for the interest rate? implied by the bond so that

$$
\begin{equation*}
\frac{1}{B\left(T_{0}, T_{1}\right)}=1+L\left(T_{0}\right)\left(T_{1}-T_{0}\right) . \tag{1}
\end{equation*}
$$

Asci: The return on our wins of cosh invested at T_{0} into the bond in $\left(\frac{1}{B\left(t \sigma_{0}\right)}-1\right)$. If $L\left(T_{0}\right)$ in the interest rate per unit of time and $T_{1}-T_{0}{ }^{1}$ exprencd in this unit then $\frac{1}{B(t, द)}-1=4\left(T_{0}\right)\left(T_{1}-T_{0}\right)$.
When an interest rate sump is whalentateen a finite set of dates is agreed, $T_{0}, T_{1}, T_{2, \ldots,} T_{n}$, , thence lie in the Future . Over the time period TH -1 to Ty the floating intieveot rate is obtained From the price, $B\left(T_{j-1}, T_{j}\right)$, of a zero coupon bond maturing at time T_{j}. So the time T_{j-1} price, $B\left(T_{j-1}, T_{j}\right)$, gives is $L\left(T_{i-1}\right.$ and

$$
\begin{equation*}
\frac{1}{B\left(T_{j-1} T_{j}\right)}=1+\left(T_{j}-T_{j-1}^{T_{j-1} T_{i}}\right) L\left(T_{j-1}\right) \tag{2}
\end{equation*}
$$

In addition to this a prearmgnea fixed interest rate, k, say obtains over each of the time periods, $\left[T_{j-1}, T_{j}\right]_{,} j=1, \ldots, n$. The swap works Like this. There are two parties who ogle a notional principal amount, N. At times T_{1}, T_{2}, \ldots, typically T_{j}, T_{h}, T_{1} $d=1,2, \ldots n$, one party receives $N L\left(T_{j-1}\right)\left(T_{j}-T_{j-1}\right)$ and pay p $K\left(T_{j} T_{j-1}\right) N$. Obviously we can act $N=1$, for simplicity. Fro From the point of
view of the party receiving $L\left(T_{j-1}\right)\left(T_{j}-T_{j-1}\right)$ and paying $k\left(T_{j}-T_{j-1}\right.$) we can calculate the value at time $t, F S_{t}(k)$, of this arrangement. At time Ty the net funds recurved are

$$
\begin{equation*}
\left(L\left(T_{j}\right)-k\right)\left(T_{j}-T_{j-1}\right)^{\theta_{j-1} T_{j}} \tag{3}
\end{equation*}
$$

We invest this sum in the raskless bond/(borrowing if it is negative) and wait until time T_{n}, the end of the swap arrangement. So this generates

$$
\begin{equation*}
B\left(T_{j}\right) \tag{4}
\end{equation*}
$$

number of bonds which have value

$$
\begin{equation*}
\frac{\left(L\left(T_{j}\right)-k\right)\left(T_{j}-T_{j-1}^{G_{1}}\right)}{B\left(T_{j}\right)} B\left(T_{n}\right) \tag{5}
\end{equation*}
$$

at time T_{n}. Adding up over j gives

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\left(L\left(T_{j}\right)-k\right)\left(T_{j}-T_{j-1}\right)}{B\left(T_{j}\right)} B\left(T_{n}\right) \tag{6}
\end{equation*}
$$

as the 'payoff' at time T_{n} of this arrangement. If we are working in a perfect market then there is a probability measure \mathbb{P} such that the discounted value of this claim is a \mathbb{P} martingales this means that

$$
\frac{F S_{t}(k)}{B_{t}}=M_{t}^{\mathbb{P}}\left(\frac{1}{B_{T_{n}}} \sum_{j=1}^{n} \frac{\left(L\left(T_{j}\right)-k\right)\left(T_{j}-T_{j-1}\right) B\left(T_{n}\right)}{B\left(T_{j}\right)}\right)
$$

that is,

$$
F S_{t}(k)=M_{t}^{\mathbb{P}}\left(\sum_{i=1}^{n} \frac{\left(L\left(T_{j}\right)-k\right)\left(T_{j}-T_{j-1}\right)}{B(t)} \underset{B\left(T_{j}\right)}{)}\right.
$$

call these last two equations (7) and (8) respectively.
The kind of swap arrangement we have described here is called
called a "forward start payer swap settled in arrears". It is Forward start because the time t considered is taken to be before the initiation of the contract. It's called a payer swap, by corvention, because our party s paying the fixed component with fixed interest rate, k. It is settled in arrears because payments occur at the end of the predalemme time periods $\left[T_{j-1}, T_{j}\right]$.
Some terminology: The number of payments, n, n often called the length of swap, motivated probably by the practise of making the length of each interval, $\left[T_{j-1}, T_{j}\right]$, the same. The interval $\left[T_{j-1}, T_{j}\right]$ is the "j-th accrual period". Dates, T_{1}, T_{2}, .., T_{n}, are the settlement dates white $T_{0,}, ., T_{n-1}$ are called reset dates, because the floating rate may change at these times. Date T_{0} is calked the start of the swap.

It can be that the arrangements of the swap are slightly different. We look at this a little later, first though :

Let us suppose (os is often the case) that the time intervals $\left[T_{j-1}, T_{j}\right]$ have constant length, then $\delta=T_{j}-T_{j-1}$, $1 \leqslant j \leqslant n$. Then, recalling that

$$
\frac{1}{B\left(T_{j \rightarrow 1} T_{j}\right)}=1+\delta L\left(T_{j-1}\right)
$$

We get

$$
\begin{align*}
F S_{t}(k) & =\sum_{j=1}^{n} M_{t}^{\mathbb{P}}\left(\left(\left(\frac{1}{B\left(r_{j-1} T_{j}\right)}-1\right)-k \delta\right) \frac{B(t)}{B\left(T_{j}\right)}\right) \\
& =\sum_{j=1}^{n} M_{t}^{\mathbb{P}}\left(\left(\frac{1}{B\left(_{j-1-1 T_{j}}\right)}-\bar{\delta}\right) \frac{B(t)}{B\left(T_{j}\right)}\right) \tag{10}
\end{align*}
$$

Where $\delta=1+k \delta$. Do

$$
\begin{equation*}
F_{S}(k)=\sum_{j=1}^{n} M_{t}^{\mathbb{P}}\left(B_{j+1}\left(T_{j-1} T_{j}\right)^{-1} \frac{B_{t}}{B_{T_{j-1}}} M_{T_{j-1}}^{\mathbb{P}}\left(\frac{B_{T_{j-1}}}{B_{T_{j}}}\right)\right)-\bar{\delta} M_{t}^{\mathbb{P}}\left(\frac{B_{t}}{B_{T_{j}}}\right), \tag{ii}
\end{equation*}
$$

since $t<T_{j-1}+M_{t} \leqslant M_{T_{j-1}}$. Now under \mathbb{P} the discounted value of claims are martingales, therefore

$$
\begin{equation*}
\left.\frac{B\left(t, T_{j-1}\right)}{B_{t}}=M_{t}^{(} \frac{B\left(T_{j-1}, T_{j-1}\right.}{B_{T_{j-1}}}\right)=M\left(\frac{1}{B_{T_{j-1}}}\right) \tag{10}
\end{equation*}
$$

so

$$
\begin{equation*}
B\left(t, T_{J-1}\right)=M_{t}^{P}\left(\frac{B_{t}}{B_{T_{-1}}}\right) \tag{is}
\end{equation*}
$$

and for "j-1=j" $\quad B\left(E, T_{j}\right)=M_{E}^{\mathbb{E}}\left(\frac{B_{t}}{B_{T_{j}}}\right) \quad$ so

$$
\begin{align*}
& \quad M_{T_{j-1}}^{\mathbb{P}}\left(\frac{B_{T_{j-1}}}{B_{T_{j}}}\right)=B\left(T_{j-1}, T_{j}\right) \text {. Hence } \\
F S_{t}(k)= & \sum_{j=1}^{n} M_{t}^{\mathbb{P}}\left(\frac{B_{t}}{B_{T_{j-1}}}\right)-\bar{\delta} M_{t}^{\mathbb{B}}\left(\frac{B_{t}}{B_{T_{j}}}\right) \\
= & \sum_{j=1}^{n} B\left(t, T_{j-1}\right)-\bar{\delta} B\left(t, T_{j}\right) \tag{14}\\
= & \left(B\left(t, T_{0}\right)-\bar{\delta} B\left(t, T_{1}\right)\right)+\left(B\left(t, T_{t}\right)-\bar{\delta} B\left(t, T_{2}\right)\right)+\cdots \\
\text { recall } \bar{\delta}= & 1+k \delta, \\
= & \left.B\left(t, T_{0}\right)-k\left(t, T_{n-1}\right)-\bar{\delta} B\left(t, T_{n}\right)\right) \\
= & B\left(t, T_{0}\right)-\sum_{j=1}^{n=1}\left(t, T_{1}\right)-k \delta\left(t, T_{j}\right)-\bar{\delta} B\left(t, T_{n}\right) .
\end{align*}
$$

"Thu exhibits our 'forward swap settled in arrears' as a contract there one receives a zero coupon bona and has to deliver a coupon bond, "payments being $k \delta$ for $n-1$ times and $1+k \delta$ at "expiry".

As we remarked swaps can have arrangement which differ from those outlined above. Some swaps may be settled in advance. What this means is that the reset dates are abo settlement dates. So at times $T_{0}, T_{1}, \ldots . T_{n-1}$, a cosh flow occurs as well of these times determining the implead interest rate' for the forthcoming period. The cash flow that occurs must be consistent with the swap settled in arrears if the are both available simultaneously otherwise an arbitrage is possible: so in this case the floating payment over $\left[T_{j-1}, T_{j}\right]$ will be $\frac{L\left(T_{j-1}\right) \delta}{\left.\left(1+L T_{j-1}\right) \delta\right)}$ white the 'fixed payment will be $k \delta\left(1+L\left(T_{j-1}\right) \delta\right)^{-1}$. Excl of these payments amount to payments of $L\left(T_{j-p}\right) \delta$ and $k \delta$ relative to T_{j} (imagine there cash flows left ir the bond maturing at time T_{j}). So the swap settled in advance should have exactly the same value as that settled in arrears, indeed : at time $T_{j_{-1}}$ the net funds received are,

$$
\frac{\left(L\left(T_{j-1}\right)-k\right) \delta}{\left.\left(1+4 \tau_{j-2}\right) \delta\right)} .
$$

We invest in the riskless bond until time T_{n}, so this generates

$$
\left.\left(L T_{j-1}\right)-k\right) \delta
$$

$$
\underset{\mathrm{j}-1}{(1+\mathrm{L}(\mathrm{~T}) \backslash \operatorname{delta}) \mathrm{B}(\mathrm{~T})} \mathrm{j}_{\mathrm{j}-1}
$$

number of lords which have value

$$
\frac{\left(L\left(T_{1-1}\right)-k\right) \delta}{\left(1+L\left(T_{j-1}\right) \delta\right) B\left(T_{j-1}\right)}
$$

at time T_{n}. Adding up over $0 \leqslant j \leqslant n-1$ gives

$$
\sum_{j=1}^{n} \frac{\left(L\left(T_{j-1}\right)-k\right) \delta B\left(T_{n}\right)}{\left(L+L\left(T_{j-1}\right) \delta\right) B\left(T_{j-1}\right)}
$$

as the 'paydf' at time T_{n}. Writing $F S_{t}^{*}(k)$ as the value at time t of this arrangement then under rwk-ruetial probability, \mathbb{P},

$$
\begin{align*}
& \frac{F S_{t}^{*}(k)}{B_{t}}=M_{t}^{\mathbb{P}}\left(\frac{1}{B\left(T_{n}\right)} \sum_{j=1}^{n} \frac{\left(L\left(T_{j-1}\right)-k\right) \delta B\left(T_{n}\right)}{\left(1+L\left(T_{j-1}\right) \delta\right) B\left(T_{-1}\right)}\right) \tag{15}\\
& F_{t}^{*}(k)=M_{t}^{\mathbb{P}}\left(\sum_{j=1}^{n} \frac{\left(L\left(T_{j-1}\right)-k\right) \delta B(t)}{\left(1+L\left(T_{j-1}\right) \delta\right) B\left(I_{j-1}\right)}\right) \tag{16}
\end{align*}
$$

but $1+L\left(T_{j-1}\right) \delta=B\left(T_{j-1}, T_{j}\right)^{-1}$ so

$$
\begin{align*}
& =M_{t}^{\mathbb{P}}\left(\sum_{j=1}^{n} B\left(\frac{\left(L\left(T_{j-1}\right)-k\right) \delta B\left(T_{j-1}, T_{j}\right)}{B\left(T_{j-1}\right)}\right)\right. \\
& =\sum_{j=1}^{n} M_{t}^{\mathbb{P}}\left(\frac{B(t)\left(L\left(T_{j-1}\right)-k\right) \delta}{B\left(T_{j-1}\right)} M_{T_{j-1}}^{\mathbb{P}}\left(\frac{B\left(T_{j-1}\right)}{B\left(T_{j}\right)}\right)\right) \\
& =\sum_{j=1}^{n} M_{t}^{\mathbb{P}}\left(\frac{B(t)}{B\left(T_{j}\right)}\left(L\left(T_{j}\right)-k\right) \delta\right) \\
& =\operatorname{FS}_{t}(k) \tag{16}
\end{align*}
$$

In this last example the floating rate determined by the zero coupon bonds was used to discount the 'arrears coot flow' to yeild the "advanced cosh flow'. One could use the fixed rate k to ducoint the fixed payment and the floating rate to discount the floating payment. This results in cash flows of $L\left(T_{j-1}\right) \delta\left(1+L\left(T_{J-1}\right) \delta\right)^{-1}$ and $k \delta(1+k \delta)^{-1}$. The values of such an arrangement at time t, after a little rearrangement, is

$$
\begin{aligned}
& F S_{t}^{* *}(k)=\sum_{j=1}^{n} M_{t}^{\mathbb{P}}\left(\frac{B_{t}}{B_{T_{j-1}}}\left(\frac{L\left(T_{j-1}\right) \delta}{\left(1+L_{j-1} \delta\right)}-\frac{k \delta}{(1+k \delta)}\right)\right) \text { (ait } \\
& =\sum_{j=1}^{n} \frac{1}{(1+k \delta)} M_{E}^{\mathbb{P}}\left(\left(\frac{B_{t}}{B_{T_{j-1}}}\right)\left(\frac{L\left(T_{j-1}\right) \delta(1+k \delta)}{\left.\left(1+L T_{j-1}\right) \delta\right)}-k \delta\right)\right) \\
& =\sum_{j=1}^{n}\left(\frac{1}{1+\delta k)} M_{t}^{\mathbb{R}}\left(\left(\frac{B_{t}}{B_{T_{j}}}\right)\left(\left(\frac{1}{8\left(T_{T-1}, T\right)}-1\right) B\left(T_{-1}, T_{j}\right)(1+k \delta)-k \delta\right)\right)\right. \\
& =\sum_{j=1}^{n} \frac{1}{\delta} M_{t}^{P}\left(\left(\frac{B_{t}}{B_{T_{t-t}}}\right)\left(\left(1-B\left(T_{2-t}, T_{j}\right)\right)(1+k \delta)-k \delta\right)\right) \quad(\delta \delta), \quad \tilde{\delta}=1+k \delta, \\
& =\sum_{j=1}^{n} \frac{1}{\delta} M_{t}^{\mathbb{P}}\left(\left(\frac{B_{t}}{B_{T_{j-1}}}\right)\left(1-8\left(T_{j-1}, T,\right)-B\left(T_{j-1}, T_{j}\right) k \delta+k \delta-k \delta\right)\right) \\
& =\sum_{j=1}^{n} \frac{1}{\delta} M_{t}^{\mathbb{P}}\left(\left(\frac{B_{E}}{B_{\tau_{j}}}\right)\left(1-B\left(T_{j-1}, T_{j}\right) \widetilde{\delta}\right)\right) \\
& =\sum_{j=1}^{n} \frac{1}{\widetilde{\delta}}\left\{M_{t}^{\mathbb{P}}\left(M_{T_{j-1}}^{\mathbb{P}}\left(B_{t} / B_{T_{j-1}}\right)\right)-M_{t}^{\mathbb{P}}\left(B\left(T_{j-1}, T_{j}\right) \tilde{\delta}\right)\right\} \\
& =\sum_{j=1}^{n} \frac{1}{\widetilde{\delta}} M_{t}^{\mathbb{P}}\left(B\left(t, T_{j-1}\right)-\widetilde{\delta} B\left(T_{j-1}, T_{j}\right)\right) \\
& =\frac{1}{\tau} \sum_{i}^{n} M_{t}^{\mathbb{E}}\left(B\left(t, T_{-1}\right)-\delta B\left(T_{-1}, T_{i}\right) \text { (19), compare with (} 14\right) \text {. }
\end{aligned}
$$

So this amounts to the forward start payer swop settled un arrears and discounted for a single time period at the rate k.

There is a feature of swap we mot disenss. They ore set up so that their value at initiation is zero. We will consider only interest rate swaps settled in arrears. The way in which the swap is set up to have zero value is by choice of k, the fixed interest rate. So we define the forward swap rate, $k(t, \pi, n)$, at time t for the (future) date T to be that value of the fixed rate, k, for which $F S_{t}(k)=0$. From the loot equality of equations (14) we get (bore $T_{0}=T$)

$$
\begin{align*}
0=B(t, T) & -\sum_{j=1}^{n-1}(k \delta) B\left(t, T_{j}\right)-\tilde{\delta}\left(B, T_{n}\right) \\
0 \quad k\left(\delta \sum_{j=1}^{n} B\left(t, T_{j}\right)\right) & =B(t, T)-B\left(t, T_{n}\right) \\
\text { nd } \quad k \equiv k(t, T, n) & =\left(B(t, T)-B\left(t, T_{n}\right)\right)\left(\delta \sum_{j=1}^{n} B\left(t, T_{j}\right)\right)^{-1} \tag{20}
\end{align*}
$$

A swap is the forward (start payer) swap with $t=T$ and the (forward) swap rate, $k(T, T, n)$, t equal to

$$
k(T, T, n)=\left(B(T, T)-B\left(T, T_{n}\right)\right)\left(\delta \sum_{j=1}^{n} B\left(T, T_{j}\right)\right)^{-1}(21)
$$

here $B(T, T)=1$ of course and T corresponds to T_{0} in our

7
of $k\left(t, T_{5} n\right)$, when $t=T$. We lett a few things unsaid in our definition. It is implicit that $k(t, T, n)$ is a fund of the length of the swap - well, at least we cannot asonme that it is independent of the time periods at this stage. We dosene that the value of a swap (for us the pager swop settled in arrears) is a moncton decreasing function of k, the fixed rate the parties agree for the contract. If we consider a single period swap with $T=T_{0}$ then

$$
k\left(t, T_{0}, 1\right)=\frac{B\left(t, T_{0}\right)-B\left(t, T_{1}\right)}{\delta B\left(t, T_{1}\right)}
$$

This coincides with the forward Labor rate over the time period $\left[T_{0}, T_{1}\right]$.

Apparently if one uses futures rates to determine swap rates then it can lead to arbitrage apportunitie (Burghardt and Hosting, 1995).

Swaptions
A payer swaption with strike rate k is the night but not the obligation to take up, at time Ts the forward payer swap with fixed rate k, (settled in arrears). A market swap is one whose current valu is zero, equivalently whose fixed rate is exactly this current swap rate. If the value, $F S_{L}(k)$, of our swap is non-negative at time T then, because both the market swap and, our swap wilt rate k, han the same floating payments to the holder, and differ

19
only in their fixed payments, it must be that k is less than (erequal to) the swap rate at time T (recall a swap is a monotone decreasing function of ts fixed rate, It follows that the swap with the rate k is more favourable than one with the current swap rate. For each we Ω for which $F S_{T}(k)(\omega)>0$ one would exercise the swaption. Presumably one could sell you interest in this swap arrangement, immediately thereby realising the payoff $F S_{T}(k)(w)$. Of coupe all of this wont work if $F S_{T}(k)(\omega) \leq 0$. So we can regard the payoff of this swaption as being $F S_{T}(k)^{+}$. This v entirely consistent with exercising the swaption and retail one's interest in the swap in the event that k is less than the current swap rate (at time T). Accordingly the value of the payer swopstion, $P S_{t}(k)$ with satisfy,

$$
P S_{t}(k)=M_{t}^{\mathbb{P}}\left(\frac{B_{t}}{B_{T}} F S_{T}(k)^{+}\right)
$$

From our formula for $F S_{t}(k)$ we can rewrite the expression for $\mathrm{PS}_{t}(k)$:
(firn 16) $P S_{t}(k)=M_{t}^{P}\left(\frac{B_{t}}{B_{T}}\left(M_{T}^{\mathbb{P}}\left(\sum_{j=1}^{n} \frac{B_{T}}{B_{T_{j}}}\left(L\left(T_{j}\right)-k\right) \delta\right)\right)^{+}\right)$.
Frombun (14) remembering $T=T$,

$$
\begin{aligned}
P S_{t}(k) & =M_{t}^{P}\left(\frac{B_{t}}{B_{T}}\left(\sum_{j=1}^{n} B\left(T, T_{j-1}\right)-\bar{\delta} B\left(T, T_{j}\right)\right)^{+}\right) \\
& =M_{t}^{\mathbb{P}}\left(\frac{B_{t}}{B_{T}}\left(1-\sum_{j=1}^{n} \delta_{j} B\left(T, T_{j}\right)\right)^{+}\right)
\end{aligned}
$$

where $\delta_{j}=k \delta$ for $j<n$ and $\delta_{n}=1+k \delta$. This allows is to
11)
see the payer swaption as an option on a coupon bearing bond:

Consider a European call option on a bond which pays coupons $c_{1}, c_{2}, \ldots, c_{m}$ at dates $T_{1} \leqslant T_{2} \leqslant \ldots \leqslant T_{m} \leqslant T=$ expiry The payoff of the option is (with strike K)

$$
\left(\sum_{j=1}^{m} C_{j} B\left(T, T_{j}\right)-K\right)^{+}
$$

and a put looks like,

$$
\left(K-\sum_{j=1}^{m} C_{j} B\left(T, T_{j}\right)\right)^{+}
$$

50 our payer swaption can be sun as a put option struck at 1 on a coupon band with coupons δ_{j} at times T_{j}. (The notional principle is 1).

Because for a random variable, x, we have $(-x)^{+}=x^{-}$ then, writing,

$$
R S_{t}(k)=M_{t}^{\mathbb{P}}\left(\frac{B_{t}}{B_{T}}\left(-F S_{T}(k)\right)^{+}\right)
$$

and noting this exactly an option on a swap in which the role of the "payer" is reversed (ie one recurves fixed and pays floating) - such swaps are called recelver swaps - then

$$
\begin{aligned}
P S_{t}(k)+R S_{t}(k) & =M_{t}^{\mathbb{P}_{t}}\left(\frac{B_{t}}{B_{T}} F S_{T}(k)\right) \\
& =F S_{t}(k)
\end{aligned}
$$

So, "payer swaption plus receiver swaption equals payer swap"

12/
Another equivalence:
Consider a contract on a notional principle of 1 as Follows. One receives the current swap rate and pays at the fixed rate k. So over a time period of length δ the net cosh flow is

$$
(k(T, T, n)-k) \delta .
$$

This occurs over time periods, $\left[T_{0}, T_{1}\right],\left[T_{1}, T_{2}\right], \ldots$ $\ldots,\left[T_{n-1}, T_{n}\right]$. Imagine this quantity invested in $B\left(T_{i}\right)$ For the period $\left[T_{i}, T_{n}\right]$. This buys

$$
\frac{(k(T, T, n)-k) \delta}{B\left(T_{i}\right)}
$$

of bonds which has time T_{n} value

$$
\frac{(k(T, T, n)-k) \delta}{E(T i)} B\left(T_{n}\right)
$$

adding it all up, the payoff from this arrangement is (at time T_{n})

$$
i_{T}(k)=\sum_{j=1}^{n}(k(T, T, n)-k) \delta \frac{B\left(T_{n}\right)}{B\left(T_{i}\right)}
$$

Sine we are in a complete market the time t value of this arrangement is

$$
\psi_{t}(k)=M_{t}^{\mathbb{P}}\left(\sum_{j=1}^{n}\left(k\left(T_{1} T_{2}, n\right)-k\right) \frac{\left.\delta B_{t} \frac{B\left(T_{n}\right)}{R / T_{i}} \frac{T_{-}\{n\}}{B\left(T_{i}\right)}\right) .}{}\right.
$$

13
Now,

$$
k(T, T, n)=\frac{1-B\left(T, T_{n}\right)}{\delta \sum_{j=1}^{n} B\left(T, T_{j}\right)}
$$

so

$$
\begin{aligned}
(k(T, T, n)-k) \delta & =\left(\frac{1-B\left(T, T_{n}\right)}{\delta \sum_{j=1}^{n} B\left(T_{,} T_{j}\right)}-k\right) \delta \\
& =\left(\frac{1-B\left(T_{,} T_{n}\right)-k \delta \sum_{j=1}^{n} B\left(T, T_{j}\right)}{\sum_{j=1}^{n} B\left(T, T_{j}\right)}\right) .
\end{aligned}
$$

But abs,

$$
M_{t}^{\mathbb{P}}\left(\left(k\left(\tau_{5} T_{, n}\right)-k\right) \delta M_{T}^{\mathbb{P}}\left(B_{T} / B_{T_{j}}\right)\right)=M_{t}^{\mathbb{P}}\left(\left(k\left(T_{j}, n\right)-k\right) \delta B\left(T_{T} T_{j}\right)\right.
$$

(equation 13) >0
$M_{t}^{P}\left(\sum_{j=1}^{n}(k(T, T, n i)-k) \delta \frac{B_{t}}{B_{T_{j}}}\right)=M_{t}^{\mathbb{P}}\left(\sum_{j=1}^{n}\left(k\left(T, T_{j} n\right)-k\right) \delta M_{T}^{\mathbb{P}}\left(\frac{B_{T}}{B_{T}}\right) \frac{B_{t}}{B_{T}}\right)$

$$
=M \mathbb{P}\left(\left(k\left(T T_{p} n\right)-k\right) \delta \cdot \sum_{j=1}^{n} B\left(T, T_{j}\right) \cdot \frac{B_{t}}{B_{T}}\right)
$$

hing the work e above $\quad=M_{t}^{\mathbb{P}}\left(\left(\mathbb{L}-B\left(t, T_{n}\right)-k \delta \sum_{j=1}^{n} B\left(T, T_{j}\right)\right) \frac{B_{t}}{B_{T}}\right.$
r

$$
=M_{t}^{\mathbb{P}}\left(\left(1-\sum_{j=1}^{n} \delta_{j} B\left(T_{j} T_{j}\right)\right) \frac{B_{t}}{B_{T}}\right)
$$

Where $\delta_{j}=k \delta$ if $j \leqslant n-1, \delta_{n}=1+k \delta$. From equation (14)

$$
1-\sum_{j=1}^{n} \delta_{j} B\left(T_{j} T_{j}\right)=F S_{T}(k)
$$

So that
14.

$$
i r_{t}(k)=M_{t}^{\mathbb{P}}\left(F S_{T}(k) B_{t} / B_{T}\right) .
$$

Which shows that the cash flows of this arrangems are identical with the forward payer swap settled in arrears.

