1. What is the biggest element of the set $\{x \in \mathbb{R}: x<1\}$? Justify your answer carefully.

It does not exist. Suppose it did, call it $m<1$. Let $n=(m+1) / 2$. Then $m=(m+m) / 2<(m+1) / 2<$ $(1+1) / 2=1$ shows that $m<n<1$, so n is a larger element of the set: a contradiction.
2. Let n be an integer. Prove carefully that if n^{2} is divisible by 3 then so is n. (Hint: any integer can be written in the form $3 m$ or $3 m+1$ or $3 m+2$, for some integer m.) Then prove carefully that $\sqrt{3}$ is irrational.
Suppose that n is not divisible by 3 . Then n can be written as either:
Case (i): $n=3 m+1 \Rightarrow n^{2}=9 m^{2}+6 m+1=3 M+1$ where $M=3 m^{2}+2 m$. So n^{2} not divisible by 3.
Case (ii): $n=3 m+2 \Rightarrow n^{2}=9 m^{2}+12 m+4=3 M+1$ where $M=3 m^{2}+4 m+1$. So n^{2} not divisible by 3.
So (n not divisible by 3$) \Rightarrow\left(n^{2}\right.$ not divisible by 3).
Therefore, conversely, $\left(n^{2}\right.$ divisible by 3$) \Rightarrow(n$ divisible by 3$)$.
Suppose $\sqrt{3}=p / q$, where p, q are integers with no common factors. Squaring proves that $p^{2}=3 q^{2}$. So p^{2} is divisible by 3. So p is also divisible by 3 .

So we can write $p=3 P$. So $9 P^{2}=3 q^{2}$, and $q^{2}=3 P^{2}$ is also divisible by 3 . Therefore q is also divisible by 3. So p, q have a common factor of 3. Contradiction.
3. Are these deductions correct or not ?
(a) My dog barks if I get out of bed on the right. I get out of bed on the left. Therefore my dog is silent.

False. Right \Rightarrow Bark. Negating gives Silent \Rightarrow Left. We are not told if Silent \Leftarrow Left.
(b) My other dog barks only if I get out of bed on the right. I get out of bed on the left. Therefore he won't bark.

True. Bark \Rightarrow Right. Therefore Not Right \Rightarrow Not Bark. I.e. Left \Rightarrow Doesn't bark.
4. Prove or disprove the following statements:
(a) the sum of two irrational numbers is always irrational

False. $\sqrt{2}$ and $-\sqrt{2}$ are irrational numbers, but their sum is rational.
(b) the sum of a rational number and an irrational number is always irrational. True. Suppose not. Then there exist integers $p, q \neq 0, p^{\prime}, q^{\prime} \neq 0$ and an irrational number i such that $p / q+i=p^{\prime} / q^{\prime}$.

Rearranging gives $i=\left(p^{\prime} q-p q^{\prime}\right) / q q^{\prime}$, which is rational. Contradiction.
(c) if n and k are positive integers, then $n^{k}-n$ is always divisible by k.

False. $2^{4}-2=14$ is not divisible by 4.
(d) $\exists \epsilon>0$ such that $\forall N \in \mathbb{N} \backslash\{0\}, \forall n \geq N, \frac{1}{n}<\epsilon$.

True: e.g. take $\epsilon=2$. Since $n \geq N \geq 1$, then $\frac{1}{n} \leq 1<\epsilon$.
5. \dagger You throw n infinitely long matches (from your infinitely long matchbox) onto the ground. Prove that you divide the ground into at most $\frac{1}{2}\left(n^{2}-3 n+2\right)$ interior regions. (You may assume without proof that the earth is flat.)
How can you get equality?
True for $n=1$: a line divides the plane into 0 interior regions (just 2 exterior ones).

Suppose true for $n=k$, and introduce a $(k+1)$ th line. This intersects each of the k original lines in at most one point each. So we get at most k intersection points along the new line, dividing the line into at most $k+1$ segments - the first and last exterior segments, and $\leq k-1$ interior segments.
Each interior segment divides a region that existed before into 2 regions. Therefore one extra region is added for each segment. Therefore at most $k-1$ new regions are added.
Therefore the total number of regions is $\leq \frac{1}{2}\left(k^{2}-3 k+2\right)+k-1=\frac{1}{2}\left(k^{2}-k\right)=\frac{1}{2}\left((k+1)^{2}-3(k+1)+2\right)$. So it is also true for $n=k+1$.

The proof shows we get equality if and only if, for all k, the $(k+1)$ th line intersects all of the previous k lines, and in distinct points. This is true if and only if none of the lines are parallel, and no 3 intersect in the same point.
6. * For which $n \in \mathbb{N}$ is $n!<2^{n}$?

Experimentation seems to show that it is true for precisely $n \leq 3$. By computation it is true for $n \leq 3$, and false for $n=4$. So by induction it is enough to prove that when $k \geq 4$, if $k!\geq 2^{k}$ then $(k+1)!\geq 2^{k+1}$.

So assume $k!\geq 2^{k}, k \geq 4$. Then $(k+1)!=(k+1) \cdot k!\geq 5.2^{k}>2.2^{k}=2^{k+1}$, as required.
7. Show that $1+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.

Clearly true for $n=1: 1=(1.2 / 2)^{2}$.
Suppose true for $n=k$. Then $1+2^{3}+\ldots+k^{3}+(k+1)^{3}=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}=\frac{k^{4}+2 k^{3}+k^{2}+4\left(k^{3}+3 k^{2}+3 k+1\right)}{4}=$ $\frac{k^{4}+6 k^{3}+13 k^{2}+12 k+4}{4}$.
But $\left(\frac{(k+1)(k+2)}{2}\right)^{2}=\frac{\left(k^{2}+3 k+2\right)^{2}}{4}=\frac{k^{4}+6 k^{3}+13 k^{2}+12 k+4}{4}$. So true also for $n=k+1$.
So by induction true for all $n \geq 1$.
You should prepare starred questions * to discuss with your personal tutor.
Questions marked \dagger are slightly harder (closer to exam standard), but good for you.

