## M1F Foundations of Analysis

1. Let $A$ be the set $\{1,3,-6,\{1,-6\}$, Doncaster, $\{1\}, X\}$. Which of the following statements are true and which are false? (Just write T or F in each case.)
(a) $X \in A$ (T)
(b) $\{X\} \in A$ ( $\mathbf{F}$ )
(c) $\{X\} \nsubseteq A(\mathbf{F})$
(d) $\{1,-6\} \in A$ (T)
(e) $\{1,3\} \notin A$ (T)
(f) $\{\{1,-6\}\} \subseteq A_{(\mathrm{T})}$
(g) $\{$ Doncaster $\} \subseteq A$ (T)
(h) $\{1,-6\} \nsubseteq A$ (F)
(i) $\emptyset \subseteq A$ ( $\mathbf{T}$ )
2.     * Describe the following sets. Prove your answers carefully, except in (d) (which we'll cover later).
(a) $\bigcup_{n=1}^{\infty}(1 / n, \infty)$
(b) $\bigcap_{n=1}^{\infty}(0,1 / n)$
(c) $\bigcup_{n=1}^{\infty}\{x \in \mathbb{R}:-n<x<n\}$
(d) $\bigcap_{n=1}^{\infty}\left\{x \in \mathbb{Q}: 2-\frac{1}{n}<x^{2}<2+\frac{1}{n}\right\}$
(a) $\bigcup_{n=1}^{\infty}(1 / n, \infty)=(0, \infty)$ because $x \in$ LHS $\Longleftrightarrow x>1 / n$ for some $n \geq 1 \Longleftrightarrow x>0 \Longleftrightarrow x \in$ RHS.
(b) $\bigcap_{n=1}^{\infty}(0,1 / n)=\emptyset$ because if $x \in(0,1 / n) \forall n$ then $x<1 / n \forall n \Rightarrow x \leq 0$ but $x>0$ which is a contradiction.
(c) $\bigcup_{n=1}^{\infty}(-n, n)=\mathbb{R}$ because $\forall x \in \mathbb{R}, \exists n \in \mathbb{R}$ such that $n>|x|$, so $x \in(-n, n)$.
(d) $\bigcap_{n=1}^{\infty}\left\{x \in \mathbb{Q}: 2-\frac{1}{n}<x^{2}<2+\frac{1}{n}\right\}=\emptyset$.

Proof: $\sqrt{2} \notin \mathbb{Q}$ so if $x \in \mathbb{Q}$ then $x^{2} \neq 2$.
So either (i) $x^{2}>2$ or (ii) $x^{2}<2$. In case (i), find $n$ such that $1 / n<x^{2}-2$ (i.e. pick $n>1 /\left(x^{2}-2\right)$ ). Then $x^{2}>2+1 / n$ so $x \notin\left\{x \in \mathbb{Q}: 2-\frac{1}{n}<x^{2}<2+\frac{1}{n}\right\}$ So $x \notin \bigcap_{n=1}^{\infty}$. Similarly for case (ii).

Therefore there are no rational numbers in $\bigcap_{n=1}^{\infty}$. Since $\bigcap_{n=1}^{\infty} \subset \mathbb{Q}$ it must be empty.
3. Which of the following statements are true and which are false ?
(a) $x^{2}-5 x+6=0 \Rightarrow x=2(\mathbf{F}, x$ might be $\mathbf{3})$
(b) $x^{2}-5 x+6=0 \Leftarrow x=3$ ( $\mathbf{T}$ )
(c) $x^{2}-5 x+6=0 \Leftrightarrow(x=2$ or $x=3)$ ( $\mathbf{T}$ )
(d) For $x^{2}-5 x+6$ to be zero it is necessary that $x=3$ ( $\mathbf{F}, x=2$ is $\mathbf{o k}$ )
(e) If $x^{2}-5 x+6=0$ then $x=3$ ( $\mathbf{F}, x$ might be $\mathbf{2}$ )
(f) $x=3$ if $x^{2}-5 x+6=0$ ( $\mathbf{F}, x$ might be 2)
(g) $x=3$ only if $x^{2}-5 x+6=0$ ( $\mathbf{T}$ )
(h) $x=1$ if $x^{2}-2 x+1=0$ ( $\mathbf{T}$, but only because this equation has just one (double) root)
4. $\dagger$ Suppose we know that the statement $P$ holds unless $Q$ holds. Which of the following statements follow and which do not ?
(a) $P$
(b) $Q \Rightarrow P$
(c) $\bar{Q} \Rightarrow P$
(d) $Q \Rightarrow \bar{P}$

The given statement tells us that $P$ holds if $Q$ does not. It tells us nothing when $Q$ holds (i.e. $P$ may or may not be true in this case). If you dispute this, think about the example "I will fail the exam unless I do some work". This does not guarantee that I will pass if I do do some work!

So it is precisely the statement $\bar{Q} \Rightarrow P$. So (c) is true, the rest do not follow from what we're told (even though in a given case they might be true).

You should prepare starred questions * to discuss with your personal tutor. Questions marked $\dagger$ are slightly harder (closer to exam standard), but good for you.

