Computing weight one modular forms over \(\mathbb{C} \) and \(\overline{\mathbb{F}}_p \).

Kevin Buzzard

May 17, 2016

Abstract

We report on a systematic computation of weight one cuspidal eigenforms for the group \(\Gamma_1(N) \) in characteristic zero and in characteristic \(p > 2 \). Perhaps the most surprising result was the existence of a mod 199 weight 1 cusp form of level 82 which does not lift to characteristic zero.

Introduction

It is nowadays relatively easy to compute spaces of classical cusp forms of weights two or more, thanks to programs by William Stein written for the computer algebra packages Magma [BCP97] and SAGE [S+12]. On the other hand, there seems to be relatively little published regarding explicit computations of weight one cusp forms. In characteristic zero, computations have been done by Buhler ([Buh78]) and Frey and his coworkers ([Fre94]), and there is a beautiful paper of Serre ([Ser77]) which explains several tricks for computing with weight one forms of prime level, but as far as we know there is (until now) nothing systematic in the literature. In characteristic \(p \) (where there are sometimes more forms— that is, forms that do not lift to characteristic zero) there is even less in the literature; see [Edi06] and the references therein, and the beginning of section 3 of this paper, for more information. The algorithms of [Edi06] for computing mod \(p \) forms of weight 1 have been implemented by Wiese in the computer algebra package Magma. Note however that they involve giving both \(N \) and \(p \) as inputs, and the running time depends on \(p \).

In this paper we report on a fairly systematic computation of weight 1 forms that we did using Magma about ten years ago now (although we re-ran the code more recently and, unsurprisingly, the same programs could now go a little further). The characteristic zero code we wrote has since been incorporated as part of Magma, but the methods work just as well in characteristic \(p \); indeed for a given level \(N \) we can compute mod \(p \) for all odd primes \(p \nmid N \) at once. In particular our algorithm takes as input only \(N \), and spits out a basis for the characteristic zero weight 1 forms, plus the primes \(p \) for which there are mod \(p \) forms that do not lift, plus the \(q \)-expansions of these non-liftable forms. We
remark that we do not even attempt to define mod p modular forms of level N if $p \mid N$. We apologise that it has taken so long to get the results down on paper.

Our methods and calculations have in the meantime been greatly extended by George Schaeffer, and his forthcoming thesis [Sch] contains many many more examples of mod p forms that do not lift to characteristic zero.

The methods basically go back to Buhler’s thesis [Buh78], and the main idea is very simple: we cannot compute in weight 1 directly using modular symbols, but if we choose a non-zero modular form f of weight $k \geq 1$ then multiplication by f takes us from cusp forms of weight 1 to cusp forms of weight $k + 1 \geq 2$ where we can compute using modular symbols, and then we divide by f again to produce the space of weight 1 forms with possible poles where f vanishes. Repeating this idea for lots of choices of f and intersecting the resulting spaces will often enable us to compute the space of holomorphic weight 1 forms rigorously. We explain the details in the next section.

Recent developments by Khare and Wintenberger on Serre’s conjecture give another approach for computing weight 1 forms in characteristic zero: instead of working on the automorphic side one can compute on the Galois side. The work of Khare and Wintenberger implies that there is a canonical bijection between the set of weight 1 normalised new cuspidal eigenforms over \mathbb{C} and the set of continuous odd irreducible representations $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{C})$ (see Théorème 4.1 of [DS74] for one direction and Corollary 10.2 of [KW09] for the other). Say ρ_f is the Galois representation attached to the form f; then the level of f is the conductor of ρ_f. Let us consider for a moment an arbitrary irreducible representation $\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{C})$. The projective image of ρ in $\text{PGL}_2(\mathbb{C})$ is a finite subgroup of $\text{PGL}_2(\mathbb{C})$ and is hence either cyclic, dihedral, or isomorphic to A_4, S_4 or A_5, and in fact the cyclic case cannot occur because ρ is irreducible. If f is a characteristic zero eigenform then we say that the type of f is dihedral, tetrahedral (A_4), octahedral (S_4) or icosahedral (A_5) according to the projective image of ρ_f. Because of the Khare–Wintenberger work, one approach for computing weight 1 modular forms of level N in characteristic zero would be to list all the finite extensions of \mathbb{Q} which could possibly show up as the kernel of the projective representation attached to a level N form, and then reverse-engineer the situation (carefully analysing liftings and ramification, which would not be much fun) to produce the forms themselves. Listing the extensions is just about possible: one can use class field theory to deal with the dihedral cases, and the A_4, S_4 and A_5 calculations can be done because the projective representation attached to a level N form is unramified outside N, so to compute in level N one just has to list all A_4, S_4 and A_5 extensions unramified outside N (which is feasible nowadays for small N and indeed there are now tables of such things, see for example [JR] for an online resource). Note that A_4 and S_4 are solvable, so one could perhaps in theory also use class field theory to analyse these cases. However lifting the projective representation to a representation can be troublesome to do in practice. Furthermore, this approach does not work in characteristic p: the problem is if k is a finite subfield of \mathbb{F}_p then $\text{PGL}_2(k)$ is a finite subgroup of $\text{PGL}_2(\overline{\mathbb{F}}_p)$, and this gives us infinitely many more extensions which must be checked for; hence the method breaks down. In
fact looking for mod \(p \) Galois representations with large image is quite hard, it seems, and perhaps it is best to do the calculations on the automorphic side and use known theorems to deduce results on the Galois side. For example, as a consequence of our search at level 82 we proved the following result:

Theorem 1. (a) There is a mod 199 weight 1 cusp form of level 82 which is not the reduction of a weight 1 characteristic zero form.

(b) There is a number field \(M \), Galois over \(\mathbb{Q} \), unramified outside 2 and 41, with Galois group \(\text{PGL}_2(\mathbb{Z}/199\mathbb{Z}) \).

This result, which relies on a computer calculation, is proved in the final section of this paper.

When we initially embarked upon this computation, the kinds of things we wanted to know were the following:

- What are the ten (or so) smallest integers \(N \) for which the space of weight 1 cusp forms of level \(N \) is non-zero?

- What is the smallest \(N \) for which there exists a weight 1 level \(N \) eigenform whose associated Galois representation has projective image isomorphic to \(A_4 \)? To \(S_4 \)?

- Give some examples of pairs \((N, p) \) consisting of an integer \(N \) and a prime \(p \) for which there is a mod \(p \) weight 1 eigenform of level \(N \) which does not lift to a characteristic zero weight 1 eigenform of level \(N \) (Mestre had already given an example with \((N, p) = (1429, 2) \); see the appendices to [Edi06]; can one find examples with \(p > 2 \)?)

We found it hard to extract the answers to these questions from the literature, so we answered them ourselves with a systematic computation of weight one forms in characteristic zero and \(p > 2 \). In 2002 we looked in the range \(1 \leq N \leq 200 \) in characteristic zero, and \(1 \leq N \leq 82 \) in characteristic \(p \) (adopting a “quit while you’re ahead” policy in the characteristic \(p \) case). Both of these bounds are very modest and even ten years ago, when we actually did the calculations, it would have been possible to go further. When Gabor Wiese re-ignited our interest in this project we ran the characteristic zero programs once more on a more modern computer, and this time they ran much faster, and up to \(N = 352 \), before running out of memory. George Schaeffer has since stepped up to the plate and his forthcoming PhD thesis pushes these calculations much further.

Our systematic computations did not find any characteristic zero weight 1 modular forms with associated Galois representations having projective image isomorphic to \(A_5 \) so we do not know what the smallest conductor of an \(A_5 \)-representation is. Some trickery computing mod 5 representations attached to weight 5 forms did enable us to “beat Buhler’s record” however – so we do now know that there is an icosahedral weight 1 form of level 675; Buhler’s weight 1 form has level 800. We verified that there were no newforms of level \(N \leq 352 \) whose associated projective Galois representation has image isomorphic to \(A_5 \).
Hence that the smallest level of a weight 1 form of A_5 type is in the range $[353, 675]$. Note that by the remarks on p248 (case (c2)) of [Ser77], and the computer calculations of [Fre94] (see in particular section 4.1 of [Kim94]), we know that the smallest prime appearing as the conductor of an A_5 representation is 2083 (and hence the range can be shortened to $[354, 675]$).

The outline of this paper is as follows. We explain our algorithm in section 1, summarise the characteristic zero results in section 2, and the characteristic p results in section 3.

Finally we would like to thank the both Frank Calegari and the anonymous referee of this paper, for helpful remarks.

\section{Computing weight one cusp forms.}

We remind the reader of some definitions. If $N \geq 5$ is an integer, then there is a smooth affine curve $Y_1(N)$ over $\mathbb{Z}[1/N]$ parameterising elliptic curves over $\mathbb{Z}[1/N]$-schemes equipped with a point of exact order N. The fibres of $Y_1(N) \to \text{Spec}(\mathbb{Z}[1/N])$ are geometrically irreducible. If $E_1(N)$ denotes the universal elliptic curve over $Y_1(N)$ then the pushforward of $\Omega^1_{E_1(N)/Y_1(N)}$ is a sheaf ω on $Y_1(N)$. There is a canonical compactification $X_1(N)$ of $Y_1(N)$, obtained by adding cusps, and this curve is smooth and proper over $\mathbb{Z}[1/N]$. Furthermore the sheaf ω extends in a natural way to $X_1(N)$. If R is any $\mathbb{Z}[1/N]$-algebra then we denote by $X_1(N)_R$ the pullback of $X_1(N)$ to R. We write $M_k(N; R)$ for $H^0(X_1(N)_R, \omega^{\otimes k})$ and refer to this space as the level N weight k modular forms defined over R. We write $S_k(N; R)$ for the sub-R-module of this R-module consisting of sections which vanish at every cusp.

If K is a field where N is invertible then the K-dimension of $M_k(N; K)$ is 0 if $k < 0$, it is 1 if $k = 0$, and can be easily computed if $k \geq 2$ using the Riemann–Roch formula. If however $k = 1$ then the Riemann–Roch theorem unfortunately only tells us the dimension of the subspace of Eisenstein series in $M_k(N; K)$. Similarly for $k \neq 1$ the dimension of $S_k(N; K)$ is also easily computed, but for $k = 1$, even the dimensions of these spaces seem to lie deeper in the theory.

A weight one cusp form of level N is a section of ω which vanishes at every cusp, and is hence a section of $\omega \otimes C^{-1}$ where C is the sheaf associated to the divisor of cusps. One can compute the degree of ω on $X_1(N)_C$ without too much trouble: for example $\omega^{\otimes 12}$ descends to a degree 1 sheaf on the j-line $X_0(1)_C$ and hence the degree of ω on $X_1(N)$ is $[\text{SL}_2(\mathbb{Z}) : \Gamma_1(N)]/24$. Similarly the number of cusps on $X_1(N)_C$ is well-known to be $\frac{1}{2} \sum_{0 < d | N} \phi(d) \phi(N/d)$, the sum being over the positive divisors of N. Hence the degree of $\omega \otimes C^{-1}$ is easily computed in practice for small N. Although we did these calculations over \mathbb{C}, the degree of ω is the same in characteristic zero and in characteristic p (we are assuming

\footnote{Note added in May 2016: explicit computations by Alan Lauder using a fast machine and the algorithms of this paper have proved that the smallest level of a weight 1 A_5 form is in fact 633; see forthcoming work “A computation of modular forms of weight one and small level” by Lauder and the author for more details.}
$N \geq 5$ so the scheme of cusps over $\mathbb{Z}[1/N]$ is etale). From these formulae, which are messy but entirely elementary, it is easy to deduce the following.

Lemma 2. Let K be a field in which the positive integer N is invertible. Then there are no non-zero weight 1 cusp forms of level N over K, if $5 \leq N \leq 22$, $24 \leq N \leq 28$, $N = 30$ or $N = 36$.

Proof. Indeed, the degree of $\omega \otimes C^{-1}$ is less than zero in these cases. □

If $N \leq 4$ then there are theoretical issues with the approach we have adopted, because $X_1(N)_K$ is only a coarse moduli space, and there is no natural sheaf ω on $X_1(N)_K$ (there is a problem at one of the cusps when $N = 4$, and problems at elliptic points when $N \leq 3$). On the other hand, one can still give a rigorous definition of a modular form of level N for $N \leq 4$ (using the theory of algebraic stacks, for example, or the classical definition as functions on the upper half plane if $K = \mathbb{C}$) and one easily checks, using any of these definitions, that a cusp form of level N is also naturally a cusp form of level Nt for any positive integer t. Because 1, 2, 3 and 4 all divide 12, and there are no non-zero cusp forms of level 12 by the above lemma, we conclude

Corollary 3. Let K be a field where the positive integer N is invertible. There are no non-zero cusp forms of level N over K for any $N < 23$.

The same argument shows that the dimension of the space of weight 1 cusp forms of level 23 is at most 1, because the degree of $\omega \otimes C^{-1}$ on $X_1(23)$ is 0. Moreover, there will be a non-zero cusp form of level 23 if and only if this sheaf is isomorphic to the structure sheaf on $X_1(23)$. Conversely, there is indeed a non-zero level 23 weight 1 cusp form in characteristic zero: namely the form $\eta(q^23)$, where $\eta = q^{1/24} \prod_{n \geq 1} (1 - q^n)$. The mod p reduction of this form is a mod p cusp form for any $p \neq 23$, and this proves that the dimension of the level 23 forms is 1 in characteristic zero and in characteristic $p \neq 23$.

We have now solved the problem of computing weight one level N cusp forms for $N \leq 28$, but of course such tricks only work for small levels, and for $N \geq 29$ we used a computer to continue our investigations. Our strategy was as follows. Let K be an algebraically closed field where $N \geq 29$ is invertible. Let $S_k(N; K)$ denote the weight k cusp forms of level N defined over K. We wish to compute $S := S_1(N; K)$. First let us choose a form $0 \neq f \in M_k(N; K)$ for some $k \geq 1$ that we can compute the q-expansion of to arbitrary precision (for example f can be a form of weight at least 2, or a weight 1 Eisenstein series or theta series). Then $f . S := \{ fh : h \in S \}$ is a subspace of $S_{k+1}(N; K)$, which is a space that we can compute as $k + 1 \geq 2$. We compute a basis of q-expansions for $S_{k+1}(N; K)$, and then divide each q-expansion by f, giving us an explicit finite-dimensional space of q-expansions which contains S. Repeating this for many choices of f and continually taking intersections will typically cut this space down, but after a while its dimension will stabilise. Let V be the space of q-expansions so obtained; this is now our candidate for S. We know for sure that it contains S. In fact, if we could somehow choose forms f_1 and f_2 as above, which were guaranteed to have no zeros in common on $X_1(N)_K$, then
we would know for sure that our space really was S. However, we know of no
efficient way of testing to see whether two given forms share a zero on $X_1(N)$,
especially in characteristic p. Note that in [Fre94], working over \mathbb{C}, a careful
choice of f_1 and f_2 is indeed made, to guarantee that they have no common
zero; our approach is more haphazard.

So far, we have a “candidate space” of q-expansions, which we know includes S and this gives us a reasonable upper bound for the dimension of S. To get a good lower bound, because we were only really interested in the case of N at most 350 or so, we wrote a program which counts dihedral representations (the logic being the folklore conjecture that “most weight 1 forms are dihedral”). More precisely, what our program does is the following. For a given N it counts the number of representation $\text{Gal}(\mathbb{Q}/\mathbb{Q}) \to \text{GL}_2(\mathbb{C})$ which are continuous, odd, irreducible, induced from a character of a quadratic extension of \mathbb{Q}, and have conductor N. This computation is a finite one because if M is a quadratic extension of \mathbb{Q} and $\psi : \text{Gal}(M/M) \to \mathbb{C}^\times$ is a continuous 1-dimensional representation then the conductor of $\text{Ind}(\psi)$ is the absolute value of $\text{disc}(M)|\text{c}(%0x00|\psi)|$, where $c(\psi)$ is the conductor of ψ (an ideal of the integers of M), and $|c(\psi)|$ is its norm. Hence there are only finitely many possibilities for M and, for each possibility, one can use class field theory to enumerate the characters $\text{Gal}(M/M) \to \mathbb{C}^\times$ of conductor I, for I any ideal of \mathcal{O}_M. This approach gives a lower bound for the dimension of the space of newforms in S, and if we repeat the computation for divisors of N, then we get a lower bound for the dimension of S.

We have explained how to get both upper and lower bounds for the dimension of a space S of characteristic zero weight one cusp forms. If these bounds coincide, which of course they often do in practice in the range we considered, then we have computed the dimension of S, we have also proved that the Galois representations associated to all eigenforms of level N and conductor χ are induced from characters of index two subgroups, and furthermore, because both methods we have sketched are constructive, we now have two ways of actually computing the q-expansions of a basis for S to as many terms as we like, within reason – an automorphic method and a Galois method.

If however we run the algorithm above, and the lower bound it produces is still strictly less than our upper bound, then we guess that there are some non-dihedral forms at level N that are not contributing to our lower bound. What we now need is a way of rigorously proving that these formal q-expansions really do correspond to holomorphic weight 1 forms rather than forms with poles. We do this as follows. Choose a form h in our vector space V. We are now suspecting that h is holomorphic; what we know is that $h = g/f$ for some non-zero weight k form f and weight $k+1$ form g. Let D denote the divisor of zeros of f. Then h is a meromorphic section of ω, with divisor of poles bounded by D. In particular we have a bound on the degree of the divisor of poles of h^2, which is now meromorphic and weight 2. Now here’s the trick. If we can find a holomorphic weight 2 form ϕ of level N whose q-expansion is the same as that of h^2 up to order q^{M+1}, where M is a large integer, then we have proved that h^2 is holomorphic; for $h^2 - \phi$ is a weight 2 form which is a holomorphic
section of $\omega^\otimes 2 \otimes (2D) \cong \omega^\otimes (2+2k)$ and yet it has a zero of order at least M at ∞, so as long as M is greater than the degree of $\omega^\otimes (2+2k)$ the form $h^2 - \phi$ must be identically zero, and in particular h must be holomorphic. If we can prove that a basis for V consists of holomorphic forms, then we have proved $V = S$. If this algorithm fails then we have really proved $V \neq S$ and we go back to choosing forms f as above and dividing out. Eventually in practice the process terminates, at least for $N \leq 350$ or so on architecture that is now ten years old. As mentioned before, George Schaeffer has taken all of this much further now.

In practice we do not quite do what is suggested above. Firstly, instead of working with the full space of forms of level N we fix a Dirichlet character of level N and work with forms of level N and this character. This gives us a huge computational saving because it cuts down the dimension of all the spaces we are working with by a factor of (very) approximately N. It does introduce some thorny issues at primes dividing $\phi(N)$, where the diamond operators may not be semisimple, but these can be dealt with by simply gritting one’s teeth and ignoring diamond operators whose order divides p in this case. In fact the issues became sufficiently thorny here for $p = 2$ that we decided to leave $p = 2$ alone and restrict to the case $p > 2$.

Secondly, in fact we do not work over a field at all; we do the entire calculation on the integral level, working over $\mathbb{Z}[\zeta_n]$ for ζ_n a primitive nth root of unity, n chosen sufficiently large that all the relevant Dirichlet characters showing up in the computation have order dividing n. In characteristic zero we only need to compute with one Dirichlet character per Galois conjugacy class; but a characteristic zero conjugacy class can break into several conjugacy classes mod p and so we need to reduce things not modulo p but modulo the prime ideals of $\mathbb{Z}[\zeta_n]$. If χ and α are $\mathbb{Z}[\zeta_n]$-valued Dirichlet characters of level N, and we are trying to compute in level N, weight 1 and character χ, then we choose $f \in S_k(N, \alpha; \mathbb{Z}[\zeta_n])$ and let L denote the lattice $S_{k+1}(N, \alpha\chi; \mathbb{Z}[\zeta_n])/f$. We run through many choices of f and, instead of intersecting vector spaces, we intersect lattices. When computing an intersection of two lattices L_1 and L_2 arising in the above way, one computes not just the intersection but also the size of the torsion subgroup of $(L_1 + L_2)/L_1$; if any prime number divides the order of this torsion subgroup then the intersection of L_1 and L_2 is bigger in characteristic p than in characteristic zero. The torsion subgroup is a $\mathbb{Z}[\zeta_n]$-module and we compute the primes above p in its support; the reduction of χ modulo these prime ideals are the mod p characters where there may be more mod p forms than characteristic zero forms. Note that in practice the order of the torsion subgroup of $(L_1 + L_2)/L_1$ can be so big that it is unfactorable, but this does not matter because we simply collect all the orders of these torsion groups and continually compute their greatest common divisor. What often happens in practice is that we manage to prove that the intersection is no bigger in characteristic p than in characteristic zero for all odd $p \nmid N$; then we have proved that all characteristic p forms lift to characteristic zero.

Occasionally however we may run into a prime number p which shows up in these torsion orders to the extent that we cannot rule out the dimension of the mod p space being higher; we can then compute the q-expansion of a
candidate non-liftable form and square it and look in weight 2 in characteristic p as explained above; if we can find the q-expansion of the square in weight 2 to sufficiently high precision then we have constructed a non-liftable form.

These tricks, put together, always worked in the region in which we did computations, which was $N \leq 352$ in characteristic 0 and $N \leq 82$ in characteristic $p > 2$. We stopped at $N = 352$ in characteristic zero because of memory issues; by then we had seen A_4 and S_4 extensions, but we still felt a long way from finding an A_5 example – there is no reason why one should not be able to proceed further by using a more powerful modern machine. In characteristic p we were running into problems of factoring very large integers when computing the torsion subgroups of the quotients above, so we stopped at $N = 82$ because of a very interesting example that we found there (see section 3).

2 Characteristic zero results.

We ran our calculations in characteristic 0 for all $N \leq 352$. Of course, the dimension of $S_1(N, \chi; C)$ was often zero.

2.1 Small level.

In characteristic zero there is a good theory of oldforms and newforms, and we firstly list the dimensions of all the non-zero spaces $S_1^\text{new}(N, \chi; C)$ for $N \leq 60$. Note that if χ_1 and χ_2 are Galois conjugate characters then the associated spaces $S_1^\text{new}(N, \chi_1; C)$ and $S_1^\text{new}(N, \chi_2; C)$ are also Galois conjugate in a precise sense, and in particular have the same dimension, so we only list characters up to Galois conjugacy. The (lousy) notation we use for characters is as follows: if the prime factorization of N is $p^e q^f \ldots$, then a Dirichlet character χ of level N can be written as a product of Dirichlet characters χ_p, $\chi_q \ldots$ of levels p^e, $q^f \ldots$. By p_a we mean a character χ_p of level p^a and order a, and by $p_a q_b \ldots$ we mean the product of such characters. This notation will not always specify the Galois conjugacy class of a character uniquely (which is why it’s lousy), but it does in the cases below apart from the case $N = 56$, where we need to add that the character 2_3 is the unique even character of level 8 and order 2 (thus making the product $2_3 7_2$ odd).

<table>
<thead>
<tr>
<th>N</th>
<th>χ</th>
<th>dimension of $S_1(N, \chi; C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>23_2</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>31_2</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>$3_2 13_2$</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>$2_1 11_2$</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>47_2</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>$2_1 13_3$</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>$5_2 11_2$</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>$2_2 7_2$</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>$3_2 19_3$</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>59_2</td>
<td>1</td>
</tr>
</tbody>
</table>
One can now deduce, for example, that the dimension of \(S_1(52; \mathbb{C}) \) is two, because no \(N \) strictly dividing 52 appears in the table, at \(N = 52 \) the character in the table above has a non-trivial Galois conjugate, and both the character and its conjugate contribute 1 to the dimension. Similar computations give the dimensions of all weight 1 spaces of level \(N \leq 60 \). All of these forms are of dihedral type and hence are easily explained in terms of ray class groups. For example, the two newforms at level 47 are explained by the fact that the class group of \(L = \mathbb{Q}(\sqrt{-47}) \) is cyclic of order 5, and if \(H \) denotes the Hilbert class field of \(L \) then the four non-trivial characters of \(\text{Gal}(H/L) \) can all be induced up to give 2-dimensional Galois representations of \(\text{Gal}(H/Q) \) of conductor 47 (one gets two isomorphism classes of 2-dimensional representations). In particular, the two newforms of level 47 are defined over \(\mathbb{Q}(\sqrt{5}) \) and are Galois conjugates.

As another example, one checks that if \(P \) is a prime above 13 in \(\mathbb{Q}(i) \) then the corresponding ray class field of conductor \(P \) has degree 3 over \(\mathbb{Q}(i) \), and the corresponding order 3 character of the absolute Galois group of \(\mathbb{Q}(i) \) can be induced up to \(\text{Gal}(\mathbb{Q}/\mathbb{Q}) \) giving a 2-dimensional representation of conductor 52 which is readily checked to be irreducible and odd, and is the representation corresponding to the level 52 form in the table above (up to Galois conjugacy).

One can of course also explain all the forms in the table above using theta series: for example the first form in the list has level 23 and quadratic character; the corresponding normalised newform \(f \) can be written down explicitly:

\[
2f = \sum_{m,n} q^{m^2 + mn + 6n^2 - q^{2m^2 + mn + 3n^2}}.
\]

There is also another well-known formula for \(f \), namely

\[
f = \frac{\eta(q)\eta(q^{23})}{\eta(q^{124})}, \quad \text{where } \eta(q) = q^{1/24} \prod_n (1 - q^n).\]

For other examples one can see [Ser77].

2.2 \(A_4 \) examples.

Our algorithm computed lower bounds for spaces of forms by counting dihedral representations, and hence our methods make it easy to spot when one has discovered a form which is not of dihedral type. To work out what is going on with these forms one needs to do both local and global calculations; the more pedantic amongst us might at this point like to choose algebraic closures \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \), and \(\overline{\mathbb{Q}}_\ell \) of \(\mathbb{Q}_\ell \) for all primes \(\ell \), and also embeddings of \(\overline{\mathbb{Q}} \) into \(\overline{\mathbb{Q}}_\ell \) (for all \(\ell \)) and into \(\mathbb{C} \); this makes life slightly easier in terms of notation.

Notation: if \(\ell \) is a prime then \(D_\ell \) denotes the absolute Galois group of \(\mathbb{Q}_\ell \), and \(I_\ell \) is its inertia subgroup.

The smallest level where there is a non-dihedral form is \(N = 124 = 2^2 \times 31 \). In fact at level 124 there are four non-dihedral newforms (and no other newforms, although there is a 3-dimensional space of oldforms coming from level 31). Let \(\chi \) be a level 124 Dirichlet character with order 2 at 2 and order 3 at 31; then \(S_1(124, \chi; \mathbb{C}) \) has dimension 2, as does \(S_1(124, \chi^{-1}; \mathbb{C}) \) (note that \(\chi^{-1} \) is the complex conjugate of \(\chi \)). What are the Galois representations attached to the corresponding eigenforms? Well, let \(f, g \) denote the two normalised eigenforms in \(S_1(124, \chi; \mathbb{C}) \).

Lemma 4. The projective image of the Galois representations associated to \(f \)
and g are isomorphic to A_4; furthermore, in both cases the number field cut out by this projective representation is the splitting field K of $x^4 + 7x^2 - 2x + 14$.

Proof. We use the following strategy. We first construct two odd Galois representations to $\text{GL}_2(\mathbb{C})$ of conductor 124 and determinant χ, whose projective images both cut out K; such representations are known to come from weight 1 forms of level 124 and hence they must be the representations associated to f and g. The lemma is hence reduced to the construction of these two Galois representations, the heart of the matter being controlling the conductor. The strategy for doing such things was already used heavily in [Fre94], and the key input is Theorem 5 of [Ser77], a theorem of Tate, which states the following: if we have a projective representation $\rho : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \rightarrow \text{PGL}_2(\mathbb{C})$ and for each ramified prime ℓ with associated decomposition group D_ℓ we choose a lifting of $\rho|_{D_\ell}$ to $\rho_\ell : D_\ell \rightarrow \text{GL}_2(\mathbb{C})$, then there is a global lift $\rho : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{C})$ of ρ such that if I_ℓ is the inertia subgroup of D_ℓ then $\rho|_{I_\ell} \cong \rho_\ell|_{I_\ell}$. In particular the conductor of ρ is the product of the conductors of the ρ_ℓ. This result reduces the computation of conductors of global lifts to a local calculation, which we now do.

The splitting field K has degree 12 over \mathbb{Q}. Let $\bar{\rho} : \text{Gal}(K/\mathbb{Q}) \rightarrow \text{PGL}_2(\mathbb{C})$ be an injection. We will lift $\bar{\rho}$ to ρ with conductor 124. One easily checks using a computer algebra package that K is unramified outside 2 and 31. The decomposition group at 2 is cyclic of order 2 and the completion of K at a prime above 2 is isomorphic to $\mathbb{Q}_2(\sqrt{3})$. The decomposition group at 31 is cyclic of order 3 and cuts out a ramified degree 3 extension K_{31} of \mathbb{Q}_{31}. The projective representation on the decomposition group at 2 lifts to a reducible representation $1 \oplus \tau$, with τ the order 2 local character which cuts out $\mathbb{Q}_2(\sqrt{3})$. This local representation has conductor 4. Similarly the projective representation at 31 lifts to the reducible representation $1 \oplus \sigma$, with σ an order 3 character with kernel corresponding to K_{31}. This local representation has conductor 31. Tate’s theorem now implies that there is a global lift $\rho : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{C})$ of $\bar{\rho}$ with conductor 124, which furthermore on I_2 looks like $1 \oplus \tau$. We know that ρ is not induced from an index 2 subgroup of $\text{Gal}(\mathbb{Q}/\mathbb{Q})$ (if it were then the projective image of ρ would be dihedral), and hence $\rho' := \rho \otimes \chi_4 \not\cong \rho$, where χ_4 is the conductor 4 Dirichlet character. A local calculation at 2 shows that ρ' also has conductor 4 (note that $\mathbb{Q}_2^{\chi_4}(\sqrt{3}) = \mathbb{Q}_2^{\chi_4}(\sqrt{-1})$). Furthermore, ρ and ρ' are odd (because K is not totally real) and hence both modular, so correspond to two distinct newforms of level 124; these forms must be f and g. \hfill \square

Note that the strategy of the above proof easily generalises to other levels, assuming one can find the relevant number field, which we could do in every case that we tried simply by looking through tables of number fields of small degree unramified outside a given set of primes. The next level where we see non-dihedral forms is $N = 133 = 7 \times 19$, with character χ of order 2 at 7 and 3 at 19; again this determines χ up to conjugation. The weight 1 forms and the corresponding representations were originally discovered by Tate and some of his students in the 1970s; see the concluding remarks of [Tat76] for some
more historical information about the calculations (which were done by hand)\(^2\). Again the dimension of the space of weight 1 forms of level \(N\) and character \(\chi\) is 2, both forms are of \(A_4\) type and the corresponding \(A_4\)-extension of \(\mathbb{Q}\) is the splitting field of \(x^4 + 3x^2 - 7x + 4\). This can be proved using the same techniques as the preceding lemma; the splitting field is unramified outside 7 and 19, the decomposition group at 7 is cyclic of order 2 cutting out \(\mathbb{Q}_7(\sqrt{7})\) and the decomposition group at 19 is cyclic of order 3; the global quadratic character one twists by to get the second form is the one with conductor 7.

Whilst we did not go through tables of extensions of \(\mathbb{Q}\) carefully and do the analogues of the above calculations to check everything rigorously, computational results seemed to indicate that the first few levels for which there are \(A_4\) newforms are the levels 124, 133, 171, 201, 209, 224 . . .

\[2.3\quad S_4\] examples.

We talked about the non-dihedral forms of levels 124 and 133 in the previous section.

The next non-dihedral newform occurs at level 148 = \(2^2 \times 37\), and it is our first form of type \(S_4\). If \(\chi\) is a Dirichlet character of level 148 which is trivial at 2 and has order 4 at 37 (there are two such characters, and they are Galois conjugate) then the dimension of \(S_1(148, \chi; \mathbb{C})\) is 1. One checks using similar techniques that the \(S_4\)-extension of \(\mathbb{Q}\) cut out by the projective Galois representation must be the splitting field of \(x^4 - x^3 + 5x^2 - 7x + 12\). Indeed, the splitting field of this polynomial has Galois group \(S_4\), is unramified outside 2 and 37, the decomposition group at 2 is isomorphic to \(S_3\) with inertia the order 3 subgroup, and the decomposition and inertia groups at 37 are both cyclic of order 4. Note that any inclusion \(S_3 \to \text{PGL}_2(\mathbb{C})\) lifts to an inclusion \(S_3 \to \text{GL}_2(\mathbb{C})\); the induced map \(\rho_2 : D_2 \to \text{GL}_2(\mathbb{C})\) has conductor 4 because it is the sum of two order three tame characters on inertia.

The author confesses that he was initially slightly surprised to see this latter extension show up again when looking for mod \(p\) phenomena in the next section.

Again, an analysis of tables of \(S_4\) extensions of \(\mathbb{Q}\) should enable one to check that the first few levels for which there are \(S_4\) forms are the levels 148, 229, 261, 283, 296 . . .

\[2.4\quad A_5\] example.

Our search for forms of level \(N\), \(1 \leq N \leq 352\), did not reveal any \(A_5\) forms. However following a suggestion of the anonymous referee, we did discover the following.

Proposition 5. There is a level 675 characteristic zero weight 1 form whose associated Galois representation has projective image isomorphic to \(A_5\).

\(^2\)We thank Chandan Singh Dalawat for pointing out this reference to us on MathOverflow.
Proof. We present a proof which is in a sense unenlightening. Let L be the splitting field of $x^5 - 25x^2 - 75$. Using a computer algebra package (for example Magma) one explicitly checks that L is not totally real, that $\text{Gal}(L/\mathbb{Q}) \cong A_5$, and that L is unramified outside 3 and 5. Furthermore 3 factors as $(P_1P_2 \ldots P_{10})^6$ with each P_i having degree 1, the discriminant of L at 3 is 3^{70}, and hence the discriminant of the completion L_1 of L at P_3 is 3^7. Hence, if G_i denote the lower numbering filtration on the group $G_0 = \text{Gal}(L_1/\mathbb{Q}_3)$ we know $7 = \sum_i |G_i| - 1$, and $|G_0| = 6$, $|G_1| = 3$, so $G_n = 1$ for all $n \geq 2$. From this we conclude that the conductor of a minimal lift of the associated representation $A_5 \to \text{PGL}_2(\mathbb{C})$ is 3^3. A similar calculation at 5 shows that the conductor of a minimal lift Galois representation $\text{Gal}(L/\mathbb{Q}) \to \text{GL}_2(\mathbb{C})$ has conductor $3^35^2 = 675$ and is modular.

As is probably clear, the proof does not answer the most important question, namely how one runs across the polynomial $x^5 - 25x^2 - 75$. The answer is that, following a suggestion of the anonymous referee, we computed mod 5 forms of small weight and character until we got lucky. At level 27 there is an ordinary weight 5 cuspidal eigenform for which the associated mod 5 Galois representation seemed to have image contained in $\mathbb{Z} \cdot \text{SL}(2, F_5)$ with \mathbb{Z} the centre of $\text{GL}(2, F_5)$. A search through the online tables [JR], knowing that there may be an A_5 extension of \mathbb{Q} unramified outside 3 and 5 for which the associated weight 1 form may have conductor less than 800, soon led us to the polynomial. Note in particular that the discovery of this A_5 form was completely independent of the weight 1 computations described in the rest of this paper.

3 Unliftable mod p weight 1 forms.

Also perhaps of some interest are the mod p forms of level N that do not lift to characteristic 0 forms of level N. We first note the following subtlety: there is a mod 3 form of level 52 with character of order 2 at 2 and trivial at 13, and this mod 3 form does not lift to a characteristic zero cusp form with order 2 character. But this is not surprising – indeed this phenomenon can happen in weight $k \geq 2$ as well, and in weight 2 it first happens at $N = 13$; this was the reason that Serre’s initial predictions about the character of the form giving rise to a modular representation needed a slight modification. The weight 1 mod 3 form of level 52 in fact lifts to a level 52 form with character of order 6, and also to an Eisenstein series of level 52 with order 2 character; on the Galois side what is happening is that the weight 1 level 52 cusp form of dihedral type mentioned in the previous section has associated Galois representation which is irreducible and induced from an index 2 subgroup, but the mod 3 reduction of this representation is reducible. The phenomenon of not being able to lift characters in an arbitrary manner was deemed “uninteresting” and we did not explicitly search for it (it happens again mod 5 at level 77 and many more times afterwards; note in particular that it can happen mod p for $p \geq 5$).

We now restrict our attention to mod p weight 1 eigenforms of level N which
do not lift to characteristic zero eigenforms of level N. We did an exhaustive search for such examples with $p > 2$. The first example we found was at level 74, where there is a mod 3 form with character trivial at 2 and of order 4 at 37. The associated mod 3 Galois representation was checked to be irreducible and have solvable image, and this confused the author for a while, because he was under the impression that the only obstruction to lifting weight 1 forms was lifting the image of Galois. This notion is indeed vaguely true, but what is happening here is that the mod 3 form of level 74 lifts to no form of level 74 but to the form of type S_4 and level $148 = 2 \times 74$ which we described in the previous section.

Why has the conductor gone up? It is for the following reason: there is a 2-dimensional mod 3 representation of D_2 whose image is the subgroup $\left(\begin{smallmatrix} 1 & \ast \\ 0 & \ast \end{smallmatrix} \right)$ of $GL_2(\mathbb{F}_3)$ and such that the image of inertia has order 3. The conductor of this mod 3 representation is 2^1; however all lifts of this representation to $GL_2(\mathbb{C})$ have conductor at least 2^2. This example was nice to find, firstly because it gave the author confidence that his programs were working, but secondly it somehow really emphasizes just how miraculous this whole theory is – these subtleties of conductors dropping show up on both the automorphic side and the Galois side.

After finding this level 74 example, what we now realised we really wanted was a mod p form which did not lift to any weight 1 form at all. Fortunately we soon found it – it was at level $N = 82 = 2 \times 41$, and to our surprise was a mod 199 form (note that 199 is prime) whose associated Galois representation had rather large image. We finish this note by explaining what we found here.

Let F_{199^2} denote the field with 199^2 elements. Fix a root τ of $X^2 + 127X + 1$; changing τ will just change everything below by the non-trivial field automorphism of F_{199^2}. One can check that the multiplicative order of τ is 40.

Let χ be the group homomorphism $(\mathbb{Z}/82\mathbb{Z})^\times \to F_{199^2}$ which sends 47 $\in (\mathbb{Z}/82\mathbb{Z})^\times$ (note that 47 is a generator of the cyclic group $(\mathbb{Z}/82\mathbb{Z})^\times$) to τ. Our programs showed that the space of mod 199 weight 1 cusp forms of level N and character χ was 1-dimensional. Let f denote this weight 1 eigenform. The reader who wants to join in at home will need to know the first few terms in the q-expansion of f:

$$f = q + (18\tau + 85)q^2 + (183\tau + 55)q^3 + (120\tau + 135)q^4 + (171\tau + 45)q^5 + (187\tau + 187)q^6 + (140\tau + 128)q^7 + (194\tau + 161)q^8 + (84\tau + 141)q^9 + (151\tau + 150)q^{10} + (106\tau + 4)q^{11} + (127\tau + 191)q^{12} + (112\tau + 92)q^{13} + (27\tau + 2)q^{14} + (146\tau + 37)q^{15} + (172\tau + 44)q^{16} + (192\tau + 4)q^{17} + (137\tau + 125)q^{18} + (189\tau + 117)q^{19} + O(q^{20})$$

This is enough to determine f uniquely. For one can formally multiply this power series by a weight 1 Eisenstein series of level 82 and character χ and the resulting q-expansion (which at this point we know up to $O(q^{20})$) is the q-expansion of a level 82 mod 199 weight 2 form with trivial character which turns out to be determined uniquely by the first 19 coefficients of its q-expansion. The q-expansion of this unique weight 2 form can be worked as far as one wants.

13
within reason; we computed it to $O(q^{20000})$ in just a few minutes. Dividing through by the Eisenstein series again gives us the q-expansion of f to as much precision as one wants.

Computing the q-expansion of f to high precision gives us, for free, plenty of facts about the mod 199 Galois representation associated to f. Note first that there is a mod 199 Galois representation attached to f: one cannot use the Deligne–Serre theorem here (because f doesn’t lift to a weight 1 form of characteristic zero) but one can construct the representation by general theory as follows. One can multiply f by the mod 199 Hasse invariant A to get a mod 199 form Af of weight 199 which is an eigenvector for all Hecke operators away from 199; the smallest Hecke-stable subspace containing Af is 2-dimensional and consists of two eigenvectors f_1 and f_2; the T_2-eigenvalues of f, f_1 and f_2 all coincide for $\ell \neq 199$, and the T_{199}-eigenvalues of f_1 and f_2 are the two roots of $X^2 - a_{199}X + \chi(199)$, which are distinct. Both f_1 and f_2 lift to characteristic zero weight 199 eigenforms which are ordinary at 199, and the associated mod 199 Galois representations are isomorphic; this is the mod 199 Galois representation ρ_f associated to f.

One consequence of the computation of f is that that its q-expansion has all coefficients in \mathbf{F}_{199}. Write $f = \sum_{n \geq 1} a_n q^n$, with $a_n \in \mathbf{F}_{199}$. Explicit computation shows that a_2 and a_{41} are non-zero. The Brauer group of a finite field is trivial and hence there is an associated semisimple Galois representation $\rho_f: \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \text{GL}_2(\mathbf{F}_{199})$. Standard facts about the mod p Galois representations associated to modular forms now imply that ρ_f is unramified outside $\{2, 41\}$. Indeed, for $\ell \neq 199$ this is standard, and for $\ell = 199$ we use the fact that the mod 199 representations of D_{199} attached to f_1 and f_2 above are upper triangular with unramified characters on the diagonal, and furthermore the unramified character showing up as the subspace in ρ_{f_1} is the character that shows up as the quotient in ρ_{f_2}; hence ρ_f restricted to D_{199} is a direct sum of two unramified characters, $\rho_f(\text{Frob}_{199})$ is semisimple, and the characteristic polynomial of $\rho_f(\text{Frob}_{199})$ is $X^2 - a_{199}X + \chi(199)$, just as the characteristic polynomial of $\rho_f(\text{Frob}_2)$ is $X^2 - a_2X + \chi(2)$ for all other primes $\ell \not\in\{2, 41\}$.

Standard mod p local-global results apply to f_1 and f_2, because they have weight bigger than 1 and lift to characteristic zero. Furthermore standard level-lowering results apply to ρ_f, because it is absolutely irreducible – indeed, if it were reducible then its semisimplification would be the sum of two characters of conductor dividing 82, and hence if ℓ_1 and ℓ_2 were primes congruent mod 82 then one would have $a_{\ell_1} = a_{\ell_2}$. However one checks from the computations that $a_7 \neq a_{89}$. In particular “classical” level-lowering results can be applied to f_1 and f_2, and one can deduce level-lowering results for f. For example, there are no weight 1 mod 199 forms of level 41 and character χ, hence ρ_f must be ramified at 2. It is also ramified at 41 (because its determinant is).

The kernel of ρ_f hence corresponds to a number field L ramified only at 2 and 41 such that $\text{Gal}(L/\mathbf{Q})$ is isomorphic to the image of ρ_f, which is a subgroup of $\text{GL}_2(\mathbf{F}_{199})$. The local representation at 2 is Steinberg, which means that inertia at 2 has order 199; the local representation at 41 is principal series corresponding to one unramified and one tamely ramified (but ramified) char-
acter, which implies that inertia at 41 has order 40. In particular L is tamely ramified at both 2 and 41.

The only natural question left is: what is the image of ρ_f, or equivalently what is $\Gal(L/Q)$? For several years we assumed that the image would contain $\SL_2(\mathbb{F}_{199})$, but it was only in 2009 that we actually tried to sit down and compute it, and we discovered that in fact the image is smaller.

Proposition 6. The image X of ρ_f is, after conjugation in $\GL_2(\mathbb{F}_{199})$ if necessary, contained in $Z \cdot \GL_2(\mathbb{F}_{199})$, with Z the subgroup of scalar matrices in $\GL_2(\mathbb{F}_{199})$. Furthermore the quotient of X by $X \cap Z$ is $\PGL_2(\mathbb{F}_{199})$.

Corollary 7. (i) There is a number field M, Galois over Q, unramified outside 2 and 41, tamely ramified at 2 and 41, and with $\Gal(M/Q) = \PGL_2(\mathbb{F}_{199})$.

(ii) The weight 1 form f does not lift to any weight 1 eigenform of characteristic zero.

Proof. (of corollary) (i) M is the kernel of $\overline{\rho}_f$. (ii) There is no finite subgroup of $\GL_2(\mathbb{C})$ with a subquotient isomorphic to the simple group $\PSL_2(\mathbb{F}_{199})$ and so ρ_f does not lift to $\GL_2(\mathbb{C})$; hence neither does f. □

Remark 8. Our original proof of the proposition involved computing many of the q-expansion coefficients of f; indeed one crucial intermediate calculation took a month. We are very grateful to Frank Calegari for suggesting a simpler approach. Our original approach can be found on the original ArXiv posting of this article, in case anyone else is wondering what it is.

Proof. (of Proposition) Let $\overline{\rho}_f$ denote the projective representation associated to ρ_f, so $\overline{\rho}_f : \Gal(\overline{Q}/Q) \to \PGL_2(\mathbb{F}_{199})$. It suffices to prove that the image of $\overline{\rho}_f$ is the subgroup $\PGL_2(\mathbb{F}_{199})$ of $\PGL_2(\mathbb{F}_{199})$. We now adopt a rather brute force approach. We have defined X to be the image of ρ_f; we now let \overline{X} denote the image of $\overline{\rho}_f$ in $\PGL_2(\mathbb{F}_{199})$. The finite subgroups of $\PGL_2(\mathbb{F}_p)$ for p a prime were classified by Dickson (see [Dic58], sections 255 and 260); they are as follows. They are either conjugate in $\PGL_2(\mathbb{F}_p)$ to a subgroup of the upper-triangular matrices, are dihedral of order prime to p, are isomorphic to A_4, S_4 or A_5, or are conjugate to $\PSL_2(k)$ or $\PGL_2(k)$ for some finite subfield $k \subset \mathbb{F}_p$. We will rule out all but one possibility for \overline{X}; we know of no other way of proving the result.

We start by observing that looking at the q-expansion of f gives upper and lower bounds for the size of \overline{X}. First, the size of \overline{X} is bounded above by the size of $\PGL_2(\mathbb{F}_{199})$, and this means that \overline{X} cannot be conjugate to $\PSL_2(k)$ or $\PGL_2(k)$ for any finite field k of size at least 1993. In fact because $\det(\rho_f) = \Im(\chi) = \mu_{40} \subset \mathbb{F}_{199}$ consists of squares in \mathbb{F}_{199}, the image of ρ_f is contained within $\mu_{80} \SL_2(\mathbb{F}_{199})$ (where here μ_{80} is the cyclic group of 80th roots of unity considered as a subgroup of the scalars in $\GL_2(\mathbb{F}_{199})$), which rules out the case $\overline{X} = \PGL_2(\mathbb{F}_{199})$ as well.

On the other hand we can compute the semisimple conjugacy classes of the first 1500 unramified primes by explicitly computing the q-expansion of f to
high precision; this only takes a few minutes and shows that X has at least 199 elements (the point being that $a_7^2/\chi(\ell)$ takes on all 199 values of F_{199} as ℓ varies over the first 1500 unramified primes; we do not need to worry about whether Frobenius elements actually are semisimple, because if $g \in X \subseteq \text{GL}_2(F_{199})$ is non-semisimple then its semisimplification is $g^{199^2} \in X$). This means that X cannot be isomorphic to A_4, S_4 or A_5. Next we observe that X cannot be conjugate to a subgroup of the upper-triangular matrices. For if it were, the semisimple representation ρ_f would be the sum of two characters each having conductor a divisor of 82 and in particular one could deduce that if ℓ_1 and ℓ_2 were unramified primes which were congruent mod 82 then a_{ℓ_1} and a_{ℓ_2} would be equal; however this is not the case, as $a_7 \neq a_{89}$. As a consequence we deduce that ρ_f is absolutely irreducible.

We are left with the following possibilities: X can be dihedral of order prime to 199, or conjugate to $\text{PSL}_2(k)$ for k of size 199 or 199^2, or conjugate to $\text{PGL}_2(F_{199})$. We next rule out the dihedral case; if X were dihedral then ρ_f restricted to an index two subgroup would be the sum of two characters, and hence ρ_f would be induced from an index 2 subgroup corresponding to a quadratic extension of \mathbb{Q} unramified outside 2 and 41. There are only seven such extensions, namely $\mathbb{Q}(\sqrt{D})$ for $D \in \{2, 41, 82, -1, -2, -41, -82\}$, and for each one it is easy to find a prime $\ell \not\in \{2, 41\}$ which is inert in the extension and such that $a_\ell
eq 0$ (indeed the smallest prime ℓ such that $a_\ell = 0$ is $\ell = 193$, but there is an inert prime $p \leq 13$ in each of these quadratic extensions). However all such Frobenius elements would have trace zero if X were dihedral.

We next rule out the case $X = \text{PSL}_2(F_{199^2})$. Our original method rather convoluted, involving writing $f = \sum_n a_n q^n$ and verifying, on a computer, that the coefficients a_n for all $n \leq 353011$ with $n \equiv 1 \text{ mod } 41$ were all in F_{199}. We then argued that $\sum_{t \geq 0} a_{1+41t} q^{1+41t}$, a weight 1 form of level $2 \times 41^2 = 3362$, must have all q-expansion coefficients in F_{199}, which gave information about the restriction of ρ_f to the absolute Galois group of $\mathbb{Q}(\zeta_{41})$, and this sufficed. This calculation took several weeks on a computer (and the details can be found on the first ArXiv version of this paper). We are grateful to Frank Calegari for providing the following alternative argument. The trick is to observe that our computer calculations have shown that the space of mod 199 level 82 weight 1 forms of character χ is 1-dimensional, and is spanned by f. Let us now construct another element of this space, as follows. In simple terms it could be described as “the Galois conjugate of the newform attached to $f \otimes \chi^{-1}$”, but because the theory of newforms is thorny in characteristic p let us spell out how to construct this form explicitly. First take f_1, the mod 199 weight 199 eigenform from before with the same Galois representation as f. Lift it to F_1, a characteristic zero eigenform of weight 199 and level 82, and with character $\bar{\chi}$ of conductor 41. The only possibility for the local component of the automorphic representation attached to F_1 at 41 is a principal series representation attached to one unramified and one ramified character. This means that the newform G_1 attached to $F_1 \otimes \bar{\chi}^{-1}$ also has level 82. Similarly if we lift F_2 to a form of character $\bar{\chi}$, the newform G_2 attached to $F_2 \otimes \bar{\chi}^{-1}$ has level 82. Furthermore
the mod 199 reductions of G_1 and G_2 have level 82, character $\chi^{-1} = \chi^{199}$ and q-expansions which are equal apart from the coefficients of q^n with $199 \mid n$. This means that their difference is the 199th power of a weight 1 form of level 82 and character χ, and this form must hence be a multiple of f.

Unravelling this we see that we have proved that if $f = \sum a_n q^n$ then for all primes $\ell \neq 2, 41, 199$ we have $\overline{a}_\ell = a_\ell/\chi(\ell)$, where $\overline{a}_\ell = a_\ell^{199}$ is the Galois conjugate of a_ℓ. In particular if $x \in \overline{X}$ and we lift x to $y \in \text{SL}_2(F_{199})$ with eigenvalues α and $1/\alpha$ then $(\alpha + 1/\alpha)^2 = a_\ell^2/\chi(\ell) \in F_{199}$. However it is easy to check that most elements of $\text{PSL}_2(F_{199})$ do not have this property. We conclude that $\overline{X} \neq \text{PSL}_2(F_{199})$.

We finally have to distinguish between the two remaining possibilities for \overline{X}, namely $\overline{X} = \text{PSL}_2(F_{199})$ and and $\overline{X} = \text{PGL}_2(F_{199})$. Because \overline{X} can be no larger than $\text{PGL}_2(F_{199})$ we do know that (after conjugation if necessary) $X \subseteq \text{GL}_2(F_{199})$, with Z the scalars in $\text{GL}_2(F_{199})$. Furthermore det$(X) = \mu_{40} \subseteq F_{199}$ and hence $X \cap Z \subseteq \mu_{80}$. One checks that if ℓ is the prime 661 then $\rho_f(\text{Frob}_\ell)$ has semisimplification a scalar matrix with order 40 and hence $\mu_{40} \subseteq X \cap Z$. Furthermore the normal index 40 subgroup $Y := \rho_f(\text{Gal}(\overline{Q}/Q(\zeta_{41})))$ of X is contained within $\text{SL}_2(F_{199})$ and hence $\overline{Y} = Y \cap Z$ is a normal subgroup of \overline{X} of index at most 40 and hence a normal subgroup of $\text{PSL}_2(F_{199})$ of index at most 40. But $\text{PSL}_2(F_{199})$ is simple and hence $\overline{Y} = \text{PSL}_2(F_{199})$. This means that Y is either $\text{SL}_2(F_{199})$ or an index 2 subgroup – but $\text{SL}_2(F_{199})$ is a perfect group and hence $Y = \text{SL}_2(F_{199})$, and so $\mu_{40} \text{SL}_2(F_{199}) \subseteq X$. Because we know Y has index 40 in X we deduce that $\mu_{40} \text{SL}_2(F_{199})$ is an index 2 subgroup of X. If $\overline{X} = \text{PSL}_2(F_{199})$ then this forces $X = \mu_{80} \text{SL}_2(F_{199})$, but this cannot be the case because the eigenvalues α and β of $\rho_f(\text{Frob}_{41})$ have the following property: if $\delta \in \mu_{80} \subseteq F_{199}$ satisfies $\delta^2 = \alpha \beta$ then $(\alpha + \beta)/\delta \not\in F_{199}$. Hence $\overline{X} = \text{PGL}_2(F_{199})$. \bbox

We finish by remarking that the corresponding $\text{PGL}_2(F_{199})$-extension of \mathbb{Q} contains a quadratic field J, corresponding to the subgroup $\text{PSL}_2(F_{199})$. It is easy to establish what this subextension is, as it is unramified outside 2 and 41 and in fact also unramified at 2, because L/\mathbb{Q} is tamely ramified at 2, and hence it must be $\mathbb{Q}(\sqrt{41})$. In particular we deduce the existence of a Galois extension of $\mathbb{Q}(\sqrt{41})$, unramified outside 2 and 41, with Galois group $\text{PSL}_2(F_{199})$.

References

