
PROBA2019
Problem Set 1

Coments, Hints & Some Solutions

1. (Algebras/σ-Algebras) Which of the following is an algebra or σ−algebra of
sets:

(a) Family of open sets in Rn with Euclidean metric;
Not an algebra, does not contains complements which are closed sets.
(b) Family of open sets in C with discrete topology;
Yes, this family contains all subsets of C and so it is the σ-algebra 2C.
(c) Family of open and closed sets in R with respect to | · − · |;
Not an algebra, it does not contains for example a set (a, b] = (a, b) ∪ {b}
(d) Intersection of all σ-algebras containing left closed intervals in R with

respect to | · − · |;
Intersection of σ-algebras is a σ-algebra. (Since a σ-algebra is closed with

respect to countable unions, it contains ∪n∈N[a− b−a
n+1 , b) = (a, b), and hence it

contains all open set. Thus it coincides with the Borel σ-algebra.)
(e) Family F of subsets of an infinite set Ω consisting of finite sets or sets

having a finite complement and the empty set and its complement.
It is not a σ-algebra. Since Ω is by our assumption infinite, it contains a sequence

(qn ∈ Ω)n∈N. Consider a sequence of sets An ≡ {q2k+1}k=1,...,n, n ∈ N. We have
∪n∈NAn = {q2k+1}k∈N which is an infinite set with infinite complement, and so
does not belong to the family in the question.
2. (Probability spaces) Which of the following is a probability space and which
is not:

(a) ([0, 2],ΣLeb ∩ [0, 2], λ) with λ denoting the Lebesgue measure on ΣLeb ∩
[0, 2].

No, as measure is not normalised to one.
(b) (N, 2N, ν) with ν({n}) ≡ 2−n

Yes, in this case for any A ∈ 2N one has by definition ν(A) ≡
∑
k∈A 2−k, with

sum equal to one if A = N.
(c) (N,F, ν) with Fas in (1e) and ν(A) ≡

∑
{n∈A} 2−n if A is finite and

ν(A) = 2 if Ac is finite.
ν is not a sigma additive measure. Since for any finite A we have

∑
{n∈A} 2−n <

1, for An ⊂ An+1with A ≡ ∪n∈NAn infinite (and so ν(A) = 2), the property
limn∈N ν(An) = ν(A) fails.
3. (Random Variables)

(a) Show that a sum and a product of random variables is a random variable.
See (b) below.
(b) Show that simple functions are random variables.
First of all one notes that a characteristic function χAof a measurabel set A

is a random variable, as we have
χ−1
A ((−∞, a)) = ∅ if a ∈ (−∞, 0)
χ−1
A ((−∞, a)) = Ac if a ∈ (−∞, 1)

1



χ−1
A ((−∞, a)) = Ω if a > 1

Next we note that for any measurable sets A and B, also A∪Bis measurable,
and

χA + χB = χA∪B\A∩B + 2χA∩B, with χA + χB = χA∪B for disjoint sets.
Hence any simple function can be represented as a sum of characteristic

functions of measurable sets with different coefficients f =
∑
k=1,...,n cnχAn . If

necessary rearranging the sum so that ck < ck+1, we get
f−1(−∞, a) = ∪{Ak : c

k
< a} which is measurable if each Ak is.

The same applies to the sums of simple functions.
Next we note that using additionally χA · χB = χA∩B we can represent

a product of two simple functions as a sum of charactersistic functions with
different coefficients. Hence it follows that the product of simple functions is a
random variable.

Since any random variable can be approximated by simple functions and the
pointwise limit of random variables are random variables, we conclude that the
sum and the product of random variables are the random variables.

(c) For a probability space (Ω,Σ, µ), such that Σ 6= 2Ω, and a set V /∈ Σ,
prove or disprove that the following is a r.v.

(i) χV ; (ii) χV ∩A for A ∈ Σ.
The first is explained before. The second can be true if the intersection is a

zero set (and the measure is complete, i.e. is considered on σ-algebra containing
all zero sets).

(d) Prove or disprove that every non-negative bounded random variable can
be approximated by a monotone non-decreasing sequence of non-negative simple
functions.

Choose a sequence εn ≡ 2−n and define
fn ≡

∑
0≥k≤22n−1 kεnLχ({kεnL ≤ f < (k + 1)εnL})

where L is choosen so that f ≤ L.
4. (Distribution function)

(a) Find a distribution function of Bernoulli random variable.
A random variable f on a probability space (Ω,Σ, µ)is called Bernoulli r.v.

iff
µ{f = α} = p ∈ (0, 1) andµ{f = β} = q ≡ 1− p
for some α < β. Then we have
Ff (x) = 0if x < α; p if α ≤ x < β; and 1if β ≤ x.
(b) Prove or disprove that “devil staircase” associated to the Tertiary Cantor

set is a distribution function. Prove or disprove that the corresponding measure
constructed via Lebesgue-Caratheodory construction is singular with respect to
the Lebesgue measure.

The Cantor function is a continuous nondecreasing function FC which is
constant on each connected component of the complement of the Cantor set in
[0, 1]. By definition of a measure of an interval, we have νC((a, b)) = FC(b) −
FC(a) = 0for any interval (a, b) contained in a connected component of the
complement of the Cantor set. Since the Lebesgue measure of all interval in this
complement is equal to one and the measure of their union according to νC is
zero, the measures are singular.
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5. (Variance and Entropy) For a product measure µ ≡ ν1⊗ν2, prove or disprove
(a) µ(f − µf)2 ≤ ν2(ν1(f − ν1f)2) + ν1(ν2(f − ν2f)2)
For square integrable function f we can apply Fubini theorem to get
µ(f − µf)2 = ν2(ν1(f − µf)2) = ν2(ν1(f − ν1(f) + ν1(f)− µf)2)
= ν2(ν1(f − ν1(f))2) + ν2(ν1(f)− µf)2

and for the last term we have
ν2(ν1(f)− µf)2 = ν2(ν1(f − ν2f))2 ≤ ν2(ν1(f − ν2f)2) = ν1(ν2(f − ν2f)2)

(b) µ
(
f2 log f2

µf2

)
= ν2

(
ν1

(
f2 log f2

ν1f2

))
+ ν2

((
ν1f

2 log ν1f
2

ν2(ν1f2)

))
One uses
µ
(
f2 log f2

µf2

)
= µ

(
f2 log f2·ν1f2

ν1f2·µf2

)
= µ

(
f2 log f2

ν1f2

)
+ µ

(
f2 log ν1f

2

µf2

)
= ν2

(
ν1

(
f2 log f2

ν1f2

))
+ ν2

(
ν1f

2 log ν1f
2

µf2

)
6. (Inequalities)

(a) Prove that for a probability measure ν on a finite set one has(∑
i(ν(fi))

2
) 1

2 ≤ ν
(∑

i f
2
i

) 1
2

We have, using triangle inequality for the norm(∑
i(ν(fi))

2
) 1

2 =
(∑

i (
∑
ω ν(ω)(fi(ω)))

2
) 1

2 ≤
∑
ω

(∑
i(ν(ω)(fi(ω)))2

) 1
2 =∑

ω ν(ω)
(∑

i(fi(ω))2
) 1

2

(b) Generalise the above to any norm.
Similar as above using the triangle inequality and homogeneity of the norm.
(c) Prove Poincare inequality for a product of Bernoulli measures.
Use 5a and mathematical induction.
(d) Prove Log-Sobolev inequality for the Bernoulli measure.
(e) Prove Log-Sobolev inequality for a product of Bernoulli measures.
Use (5b) and the following inequality∣∣∣∇(νf2)

1
2

∣∣∣2 ≤ ν|∇f |2
which follows from triangle inequality for the norms.
7. (Independence)
(a) (Starting from simple functions) prove that for non-negative real val-

ued random variables fi, i = 1, . . . , n, on (Ω,Σ, ν) which are independent and
integrable, one has ∫ n∏

i=1

fidν =

n∏
i=1

∫
fidν

First one shows this property for simple functions, which is a simple use of in-
dependendece together with rearrangement of sums of nonnegative terms. Then
we can chose a monotone sequence of simpe functions for each fi and use the
monotone convergence theorem.

(b) Using (7a) prove similar relation for a product of integrable independent
r.v.s.

First we decompose each fi into positive and negative parts which for differ-
ent indices are independent. In this way we represent each integral as a sum of
terms as considered in (7a).
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(c) Given distribution functions Fiof real valued independent r.v.s Xi , i =
1, . . . , n, defined on the same probability space, find a distribution of the sum
of these r.v.s.

Using mathematical induction, it is sufficient to consider the case n = 2. By
definition we have

FX+Y (z) ≡ µ{X + Y ≤ z} =
∫
χ{X+Y≤z}dµ

Because of independence of X and Y , we have µ{X ∈ A, Y ∈ B} = µ{X ∈
A}µ{Y ∈ B}. Hence we have the following representation of the integral∫

χ{X+Y≤z}dµ =
∫
χ{x+y≤z}dFX(x)dFY (y) =

∫
FX(z − y)dFY (y) ≡ FX ∗

FY (z)
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