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Lecture 2
Filtering. Lest the introduction of filtrations seem fussy, we mention here
an important practical subject in which it is of the essence (as the name
suggests): filtering. Here one studies one process, given information unfolding
with time about another process related to it. One then needs to carry both
the filtration of the observed process, and of the ‘signal’ process under study.
The language of filtrations and conditional expectations is essential here.

Filtering is intimately linked to stochastic control. As usual, the two
principal prototypes are the Gaussian and Poisson cases. For monograph
accounts, see e.g. [Kal] for the Gaussian case (including, in the special case
of linear filtering, the Kalman filter), and [Bré] for the Poisson case.
Stopping Times. A random variable T is a stopping time for the filtration Ft

iff
{T ≤ t} ∈ Ft ∀t.

Interpretation. Think of T as the time a gambler quits a gambling game. He
has to take the decision whether to quit at t on the basis of what he knows at
t - without foreknowledge of the future. Similarly, in finance an investor has
to decide whether to change his holdings of a stock at t on the basis of what
he knows already - he has no foreknowledge of future price movements.

If S, T are stopping times, so are max(S, T ), min(S, T ), etc.
Markov Processes. A process X is Markov if, for all A ∈ σ{Xs : s > t} (‘the
future’ at time t), B ∈ σ{Xs : s < t} (‘the past’),

P (A|Xt, B) = P (A|Xt). (MP )

In discrete time, a Markov process is usually called a Markov chain.
Interpretation. Knowing where you are at time t (Xt), knowing how you got
there (B) is irrelevant for purposes of predicting the future (A).
Strong Markov Processes. A Markov process is strong Markov if the Markov
property (MP) holds for stopping times T as well as fixed times t.

This is a definite restriction in continuous time, though not in discrete
time.
Example: A Markov but not strong Markov process. Let T be an exponen-
tially distributed random time, and let Xt be 0 for t ≤ T , T − t for t ≥ T .
Then X has graph below:
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The Markov property fails at time T .
Another example is the left-continuous Poisson process; see below.

Martingales. A process X = (Xt) is a martingale (mg) w.r.t. the filtration
Ft - briefly, an Ft-mg - if it is adapted to this filtration,

E|Xt| < ∞ ∀t,

and for s ≤ t,
E(Xt|Fs) = Xs a.s.

X is a submartingale (submg) if E(Xt|Fs ≥ Xs for s ≤ t;
X is a supermartingale (supermg) if E(Xt|Fs ≤ Xs for s ≤ t.
Interpretation. Martingales model fair games. Submartingales model favourable
games. Supermartingales model unfavourable games.

Martingales represent situations in which there is no drift, or tendency,
though there may be lots of randomness. In the typical statistical situation
where we have

data = signal + noise,
martingales are used to model the noise component. It is no surprise that we
will be dealing constantly with such decompositions later (with ‘semimartin-
gales’).
Closed martingales. Some mgs are of the form

Xt = E[X|Ft] (t ≥ 0)

for some integrable random variable X. Then X is said to close (Xt), which
is called a closed (or closable) mg, or a regular mg. It turns out that closed
mgs have specially good convergence properties:

Xt → X∞ (t → ∞) a.s. and in L1,

and then also
Xt = E[X∞|Ft], a.s.

This property is equivalent also to uniform integrability (UI):

supt

∫
{|Xt|>x}

|Xt|dP → 0 (x → ∞).

For proofs, see e.g. [Wil91], Ch. 14, [Nev], IV.2.
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Square-Integrable Martingales. For M = (Mt) a mg, write M ∈ M2 if M is
L2-bounded:

suptE(M2
t ) < ∞,

and M ∈ M2
0 if further M0 = 0. Write cM2, cM2

0 for the subclasses of
continuous M .

For M ∈ M2, M is convergent:

Mt → M∞ a.s. and in mean square

for some random variable M∞ ∈ L2. One can recover M from M∞ by

Mt = E[M∞|Ft].

The bijection
M = (Mt) ↔ M∞

is in fact an isometry, and since M∞ ∈ L2, which is a Hilbert space, so too
is M2. For proofs, see e.g. [R-W1]IV.4, §§23-28, or [Nev], VII.

Where there is a Hilbert-space structure, one can use the language of
projections, of Pythagoras’ theorem, etc., and draw diagrams as in Euclidean
space. For a nice treatment of the Linear Model of statistics in such terms
(analysis of variance = ANOVA, sums of squares, etc., see [Wil01], Ch. 8.
Local Martingales. For X = (Xt) a stochastic process and T a stopping time,
call XT the process X stopped at T ,

XT := Xt∧T .

If X is a process and (Tn) an increasing sequence of stopping times, call X
a local martingale if (XTn) = (XTn∧t) is a mg. The sequence (Tn) is called a
localizing sequence.
Semi-Martingales. An adapted, càdlàg processX = (Xt) is a semi-martingale
if it can be decomposed as

Xt = X0 +Nt + At,

with N a local mg and A a process locally of bounded variation (we will
abbreviate ‘locally of bounded variation’ to BV). Such processes are also
called decomposable, and the above is called the (semi-martingale, under-
stood) decomposition. For background, see e.g. [Pro], III, [R-W1], IV.15.
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(Recall: a function f is of bounded variation if the supremum of its varia-
tion

∑
i |f(xi+i − f(xi)| over partitions xi is finite; this happens iff f can be

represented as the difference of two monotone functions.)
Previsible (= Predictable) Processes. The crucial difference between left-
continuous (e.g., càglàd) functions and right-continuous (e.g., càdlàg) ones is
that with left- continuity, one can ‘predict’ the value at t - ‘see it coming’ -
knowing the values before t.

We write P, called the predictable (or previsible) σ-algebra, for the σ-
algebra on R+ × Ω (R+ for time t ≥ 0, Ω for randomness ω ∈ Ω - we need
both for a stochastic process X = (X(t, ω))) for the σ-field generated by (=
smallest σ-field containing) the adapted càglàd processes. (We shall almost
always be dealing with adapted processes, so the operative thing here is the
left-continuity.) We also write X ∈ P as shorthand for ‘the process X is
P-measurable’, and X ∈ bP if also X is bounded.
Predictability and Semi-Martingales. Anticipating greatly, let us confess here
why we need to introduce the last two concepts. We will develop a theory
of stochastic integrals,

∫ t
0 H(s, ω)dM(s, ω) or

∫ t
0 HsdMs, where H, M are

stochastic processes and the integrator M is a semimartingale, the integrand
H is previsible (and bounded, or L2, or whatever). This can be done (though
we shall have to quote many proofs; see e.g. [Pro] or [R-W2]). More: this
theory is the most general theory of stochastic integration possible, if one
demands even reasonably good properties (appropriate behaviour under pas-
sage to the limit, for example). For emphasis:

Integrands: previsible,
Integrators: semimartingales.

Prototype: H is left-continuous (and bounded, or L2, etc.); M is Brownian
motion (Ch. 2, 3).
Economic Interpretation. Think of the integrator M as, e.g., a stock-price
process. The increments over [t, t+u] (u > 0, small) represent ‘new informa-
tion’. Think of the integrand H as the amount of stock held. The investor
has no advance warning of the price change Mt+dt −Mt over the immediate
future [t, t + dt], but has to commit himself on the basis of what he knows
already. So H needs to be predictable at H before t (e.g., left- continuity will
do), hence predictability of integrands. By contrast, Mt+dt −Mt represents
new price-sensitive information, or ‘driving noise’. The value process of the
portfolio is the limit of sums of terms such as Ht−(Mt+dt−Mt), the stochastic
integral

∫ t
0 HsdMs. This is the continuous-time analogue of the martingale

transform in discrete time; see e.g. [Nev], VIII.4.
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Note. Stochastic calculus with ‘anticipating’ integrands, ‘backward’ stochas-
tic integrals, etc., have been developed, and are useful (e.g., in more advanced
areas such as the Malliavin calculus. But let us learn to walk before we learn
to run.
Renewal Processes; Lack of Memory Property; Exponential Distributions.
Suppose we use components - light-bulbs, say - whose lifetimes X1, X2, . . .
are independent, all with law F on (0,∞. The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

Sn :=
n∑
1

Xi, Nt := max{k : Sk < t}.

Then N = (Nt : t ≥ 0) is called the renewal process generated by F ; it is a
counting process, counting the number of failures seen by time t.

The law F has the lack-of-memory property iff the components show no
aging - that is, if a component still in use behaves as if new. The condition
for this is

P (X > s+ t|X > s) = P (X > t) (s, t > 0),

or
P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).

Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt

for some λ > 0 - the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0)

is a ‘functional equation’ - the Cauchy functional equation - and it turns out
that these are the only solutions, subject to minimal regularity (such as one-
sided boundedness, as here - even on an interval of arbitrarily small length!).
For details, see e.g. [BGT], §1.1.1.

So the exponential laws E(λ) are characterized by the lack-of-memory
property. Also, the lack-of-memory property corresponds in the renewal con-
text to the Markov property. The renewal process generated by E(λ) is called
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the Poisson (point) process with rate λ, Ppp(λ). So:
among renewal processes, the only Markov processes are the Poisson processes.
When we meet Lévy processes (Ch. 2 below) we shall find also:
among renewal processes, the only Lévy processes are the Poisson processes.
Historical Overview: Martingale Calculus.

Stochastic integrals can be found in the work of Wiener (e.g. Paley-
Wiener-Zygmund, 1933, MZ) and Doob (1937, TAMS), but the origin of
the subject in its modern setting and generality was the paper by Itô in
1944 (Proc. Imp. Acad. Tokyo), whence the name Itô calculus. Important
further strides were taken by the Japanese school, in particular by Kunita
and Watanabe (square-integrable mgs, Kunita- Watanabe inequality). The
first classic textbook, on the Brownian case, was McKean in 1969 [McK]. The
work of P.-A. Meyer and the French/Strasbourg school resulted in both the
‘general theory of (stochastic) processes’ and the first monograph account
of stochastic calculus for semimartingales (the concept is due to Meyer) in
1976, [Mey]. The Poisson case, though less difficult, was developed later, the
impetus being filtering theory (work of Wong, Snyder. Kushner and others
in the 1970s). The term ‘martingale calculus’ is due to Wong; see [Bré] for
the first monograph treatment of Poisson calculus, in the context of queueing
theory, [BaBr] for its sequel, on ‘Palm-martingale calculus’ - again applied
to queueing theory. The first monograph on stochastic calculus for Lévy
processes (Ch. 2) - ‘Lévy calculus’ - is still to appear [A]; I thank Professor
D. B. (Dave) Applebaum of NTU for access to a copy in advance.
Note. Although the Itô integral cannot be generalized further without losing
its desirable properties, it is in fact not the only concept of stochastic integra-
tion that one needs. It does not transform well under change of coordinates
in geometrical situations, for which one needs instead the Stratonovich inte-
gral (see e.g. [R-W2], IV.46, 47). Also, a new theory of stochastic integration
with ‘rough paths’ (e.g., Brownian motion) has recently been developed by
Professor T. J. (Terry) Lyons of Oxford:
T. J. LYONS & Zhongmin QIAN: System control and rough paths, OUP,
2002.
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