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Q1. (i) Size of market participants. We assume in mathematical finance that
market participants are price takers and not price makers. This is true to a
first approximation, depending on the size of the trade and the degree of de-
tail. The price is the level at which markets clear – i.e., at which supply and
demand currently balance. But each trade itself alters the current balance
of supply and demand, and moves the price.

For small market participants, the assumption of ‘price taker, not price
maker’ is a reasonable approximation. For large market participants, it is
not: large trades visibly move prices, at any level of detail. [5]
(ii) Normal v. crisis market conditions. For heavily traded liquid stocks
under normal market conditions, we observe a large number of individually
small trades, with the price discontinuous in detail but continuous viewed
‘from a distance’. This phenomenon is called jitter. We can model it using a
continuous process (e.g. geometric BM, as in the Black-Scholes (BS) model
– complete), or using, e.g. an infinite-activity Lévy process (incomplete).

Financial and economic crises create shocks, which affect prices of all as-
sets. We can model these using e.g. a compound Poisson process.

Markowitzian diversification breaks down under crisis conditions. We
cannot diversify: prices of all assets fall, and the negative correlation in a
balanced portfolio that protects us under normal market conditions (‘what
we lose on the swings we gain on the roundabouts’) no longer works. [5]
(iii) Continuous v. jump price processes. Continuous price processes are
convenient: they occur in the benchmark BS model, and give a reasonable
approximation. The BS model is complete, so prices are unique. Problems
include the symmetry and ultra-light tails of the BS model, neither realistic:
real prices show skew, and much fatter tails than normal. Jump price pro-
cesses avoid these, but give incomplete markets, where prices are non-unique
(‘bid-ask spread’). [5]
(iv) Discrete v. continuous time. Time has both discrete and continuous
aspects, depending how we measure it. Continuous time allows us to use
Itô calculus and BS. But as BM has infinite variation, hedging is now prob-
lematic. Discrete time is more realistic, in that trading can only be done
discretely in practice. But the mathematics is more complicated: e.g., dis-
crete BS (binomial sum) is more complicated than continuous BS. [5]
[Mainly seen – lectures]
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Q2: Copper option. (i) Pricing. With H the payoff of the call option C in a
year’s time: H is 100 if the copper price goes up, 0 if it goes down.

We determine the risk-neutral probability p∗ so as to make the option a
fair game [martingale]:

6, 720 = p∗.6, 820 + (1− p∗).6, 570 = 250p∗ + 6, 570 : 150 = 250p∗ :

p∗ = 3/5 = 0.6.

The value of the option at time 0 is

V0 = E∗[H] = p∗.100 + (1− p∗).0 = 100.(0.6) = 60. [6]

(ii) Hedging. The call C is financially equivalent to a portfolio Π consisting
of a combination of cash and copper, as the binomial model is complete – all
contingent claims (options etc.) can be replicated. To find which combination
(ϕ0, ϕ1) of cash and copper, we solve two simultaneous linear equations, for
the ‘up’ and ‘down’ states:

100 = ϕ0 + 6, 820ϕ1,

0 = ϕ0 + 6, 570ϕ1.

Subtract: 100 = 250ϕ1: ϕ1 = 2/5 = 0.4.
Substitute: ϕ0 = −6, 570× 0.4 = −$2, 628.
So the option is equivalent to the portfolio Π = (−2, 628, 2/5): long, 2/5
tonne copper, short, $ 2,628.
Check: in a year’s time,
Copper up: Π is worth (0.4).6820 - 2628 = 2728 - 2628 = 100, as H is;
Copper down: Π is worth (0.4).6570 - 2628 = 2628 - 2628 = 0, as H is. [6]
Arbitrage. By (i) and (ii), you know C and Π are worth 60 now.
(iii) If you see C being traded (= bought and sold) for more than it is worth,
sell it, for 80. You can buy it, or equivalently the hedging portfolio Π, for
60. Pocket the risk-free profit $ 20 now. The hedge enables you to meet your
obligations to the option holder, at zero net cost. [2]
(iv) If you see C being traded for less than it is worth, buy it, for 40. You can
sell it, equivalently Π, for 60. Pocket the risk-free profit $ 20 now. Again, the
option payoff enables you to clear your trading account, at zero net cost. [2]
(v) Such options are bought by manufacturers using copper (e.g., electrical
goods), as an insurance policy against prices going up. [2]
(vi) The corresponding put options are bought by producers of copper, as an
insurance policy against prices going down. [2]
[Similar seen: lectures and problems]
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Q3 Doubling strategy. (i) With N the number of losses before the first win:

P (N = k) = P (L,L, · · · , L(k times),W ) = (
1

2
)k.

1

2
= (

1

2
)k+1.

That is, N is geometrically distributed with parameter 1/2. As

∞∑
k=0

P (N = k) =
∞∑
0

(
1

2
)k+1 =

1

2
/(1− 1

2
) = 1,

P (N < ∞) = 1: N < ∞ a.s. So one is certain to win eventually. [4]
(ii) Let Sn be one’s fortune at time n. When N = k, one has losses at trials
1, 2, 3, . . . , k, with losses 1, 2, 4, . . . , 2k−1, followed by a win at trial k + 1 (of
2k). So one’s fortune then is

2k − (1 + 2 + 22 + . . .+ 2k−1) = 2k − (2k − 1) = 1,

summing the finite geometric progression. So one’s eventual fortune is +1
(which, by (i), one is certain to win eventually). [4]
(iii) N has PGF

P (s) := E[sN ] =
∞∑
n=0

skP (N = k) =
∞∑
0

sk.(
1

2
)k+1

=
1

2

∞∑
0

(
1

2
s)k =

1

2
/(1− 1

2
s) = 1/(2− s) :

P ′(s) = E[NsN−1] = (2− s)−2; P ′(1) = E[N ] = 1.

So the mean number of losses is 1, and the mean time the game lasts is 2. [4]
(iv) As with the simple random walk: this is an impossible strategy to use
in reality, for two reasons:
(a) It depends on one’s opponent’s cooperation. What is to stop him trying
this on you? If he does, the game degenerates into a simple coin toss, with
the winner walking away with a profit of 1 (pound, or million pounds, say)
– suicidally risky. [4]
(b) Even with a cooperative opponent, it relies on the gambler having an
unlimited amount of cash to bet with, or an unlimited line of credit – both
hopelesly unrealistic in practice. [4]
[Seen – Problems]
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Q4. (i) A filtration {Ft} on a probability space (Ω,F , P ) is an increasing
family of σ-fields Ft, right-continuous (Ft = Ft+ :=

∩
s>t Fs) and complete

(containing all subsets of P -null sets as P -null sets). A filtration models the
information flow of a dynamic model (stochastic process). [4]
(ii) A uniformly integrable martingale is a martingale M = (Mt) satisfying
the uniform integrability condition

supt inf
|Xt|>A

|Xt|dP → 0 (A → ∞). (UI)

Such a mg is of the form
Xt = E[XT |Ft],

where T (finite or infinite) is the time-horizon (e.g., the expiry time of an
option). It gives the best estimate available at time t of a payoff H known
only at T , by ‘progressive revelation’. Such a UI mg converges:

Xt → XT (t ↑ T ) a.s. and in L1. [4]

(iii) The risk-neutral measure (RNM) (or equivalent martingale measure (EMM))
P ∗ makes discounted asset prices martingales. The RNM exists if the mar-
ket has no arbitrage; it is unique if the market is complete. So (Fundamental
Theorem of Asset Pricing, FTAP) the RNM exists and is unique iff the mar-
ket is arbitrage-free and complete. [4]
(iv) The risk-neutral valuation formula (RNV) is

Vt = E∗[e−r(T−t)H|Ft] (0 ≤ t ≤ T ), (RNV )

with E∗ the P ∗-expectation. The value process V = (Vt) of the option with
payoff H at expiry T , given by (RNV), is a UI mg. [4]
(v) Insider trading. The crux of (RNV) is that prices of options on publicly
quoted risky assets at time t depend only on publicly available information
at time t. Price-sensitive information is often available to numbers of peo-
ple (typically, those involved in the planning and execution of mergers and
acquisitions (M&A) – e.g., a hostile take-over). Such insiders have access
to a bigger filtration than traders using only publicly available information.
Such people are prohibited by law from seeking to profit by such inside in-
formation by trading on their own account. This is rightly regarded as theft
at the expense of the market. The regulatory authorities monitor trading,
and their software flags suspicious trades, which can be investigated for such
insider trading. [4]
[Seen – lectures]
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Q5. The Ornstein-Uhlenbeck process. (i) The Ornstein-Uhlenbeck SDE dV =
−βV dt+ σdW (OU) models the velocity of a diffusing particle. The −βV dt
term is frictional drag; the σdW term is noise. [2]
(ii) e−βt solves the corresponding homogeneous DE dV = −βV dt. So by
variation of parameters, take a trial solution V = Ce−βt. Then

dV = −βCe−βtdt+ e−βtdC = −βV dt+ e−βtdC,

so V is a solution of (OU) if e−βtdC = σdW , dC = σeβtdW , C = c +∫ t

0
eβudW . So with initial velocity v0,

V = v0e
−βt + σe−βt

∫ t

0

eβudWu. [4]

(iii) V is Gaussian, as it is obtained from the Gaussian process W by linear
operations.
Vt has mean v0e

−βt, as E[eβudWu] =
∫ t

0
eβuE[dWu] = 0.

By the Itô isometry, Vt has variance

E[(σe−βt

∫ t

0

eβudWu)
2] = σ2

∫ t

0

(e−βt+βu)2du

= σ2e−2βt

∫ t

0

e2βudu = σ2e−2βt[e2βt − 1]/(2β) = σ2[1− e−2βt]/(2β).

So the limit distribution as t → ∞ is N(0, σ2/(2β)). [4]
(iv) For u ≥ 0, the covariance is cov(Vt, Vt+u), which (subtracting off v0e

−βt

as we may) is

σ2E[e−βt

∫ t

0

eβvdWv.e
−β(t+u)(

∫ t

0

+

∫ t+u

t

)eβwdWw].

By independence of Brownian increments, the
∫ t+u

t
term contributes 0, leav-

ing as before

cov(Vt, Vt+u) = σ2e−βu[1− e−2βt]/(2β) → σ2e−βu/(2β) (t → ∞). [4]

(v) The process V is Markov (a diffusion), being the solution of the SDE
(OU). [3]
(vi) The process shows mean reversion, and the financial relevance is to the
Vasicek model of interest-rate theory. [3]
[Seen – lectures and problems]
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Q6. (i) In the continuous-time Black-Scholes model, the SDE of the stock
price S = (St) is that of geometric Brownian motion (GBM):

dSt = St(µdt+ σdWt), (GBM)

with W = (Wt) Brownian motion (BM), µ the mean return rate on the stock,
σ the volatility of the stock. [3]
(ii) The solution to (GBM) is St = S0 exp{(µ− 1

2
σ2)t+ σWt}. [2]

(iii) The paths t 7→ St of the solution in (ii) are continuous, as BM is. [2]
(iv)

Ct = e−r(T−t)E∗[(ST −K)+|Ft],

where Ft is the information available at time t.
To obtain the Black-Scholes formula from this, one uses (ii) and Gir-

sanov’s theorem – which in effect replaces µ by r to get, under P ∗,

ST = St exp{(r −
1

2
σ2)(T − t) + σ(WT −Wt)}

= St exp{(r −
1

2
σ2)(T − t) + σ

√
(T − t)Z}, Z ∼ N(0, 1).

Combining, if St = S,

Ct =

∫ ∞

−∞
[S exp{−1

2
σ2(T − t) + σ

√
(T − t)x} −K]+.

e−
1
2
x2

√
2π

dx.

This can be evaluated explicitly, to give the Black-Scholes formula:

F (t, s) = sΦ(d+)−e−r(T−t)KΦ(d−), d± := [log(s/K)+(r±1

2
σ2)(T−t)]/σ

√
T − t.

[4]
(v) The model is complete. This is a consequence of the Brownian Martin-
gale Representation Theorem and the continuity of Brownian paths. [2]
(vi) Hedging is problematic, because it involves continuous rebalancing of the
portfolio of cash and stock. This cannot be done in practice, as Brownian
paths have finite quadratic variation, so infinite variation: one would need
an infinite amount of rebalancing, which is impossible. [4]
(vii) To circumvent this, one could work in discrete time with a binomial
tree model and the discrete Black-Scholes formula. Or, one could use a price
process with jumps (e.g., from a Lévy process), at the cost of incompleteness
and so non-uniqueness of prices. [3]
[Seen – lectures] NHB
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