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Q1. Reinsurance and limited liability.
(i) Limited liability.

Lloyd’s of London pre-dates limited liability (which developed in the mid-
19th C.). The Lloyd’s participants, or names, had unlimited liability, and
were liable for the full extent of losses, irrespective of their investment or
their assets. This changed, following the Lloyd’s scandal of the 1990s.

Insurance is now done (and most was before the Lloyd’s scandal) by lim-
ited liability companies. So for these, the possibility or ruin is crucial. Not
only would this wipe out the company, its assets and expertise, the jobs of
its employees etc., but it would leave policy-holders without cover. [5]
(ii) Reinsurance. Because a run of large claims could bankrupt an insurance
company, companies seek to lay off large risks – to reinsure – insure them-
selves – with larger, specialist reinsurance companies.

The question arises as to where reinsurance companies re-reinsure them-
selves ... This raises the modern form of Juvenal’s question: Quis custodiet
ipsos custodes – Who guards the guards? Who reinsures the reinsurers? [5]
(iii) Regulation. It is in the interest of some industries to agree to cover each
other’s liabilities in the event of a bankruptcy – e.g., travel firms. If a travel
firm goes bust, leaving large numbers of people stranded abroad, or unable
to travel on a foreign holiday booked and paid for, this would destroy public
confidence in the whole industry – unless other firms, by prior agreement,
step in to cover. This works well – a form of self-regulation (like the press).

As motor insurance is compulsory by law, motor insurance companies are
regulated by the state, giving some protection against bankruptcy. [5]
[Basel I, II and III are relevant to regulation generally, less to insurance.]
(iv) Lender of last resort. When a big concern is facing bankruptcy, the
knock-on effects for the nation’s economy may be so severe that it may be in
the national interest to intervene. This is done by the lender of last resort –
the central bank (Bank of England (BoE) in the UK, Federal Reserve (Fed)
in the US, European Central Bank (ECB) in the European Union (EU),
etc.), acting on behalf of the state (or e.g. EU). This raises questions as to
the relationship between the central bank and the national government: how
independent of government is the central bank, and so how free of political
pressures? [5]
[Mainly seen – lectures]
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Q2. (i) Volatility. The Black-Scholes formula involves the parameter σ
(where σ2 is the variance of the stock per unit time), called the volatility
of the stock. In financial terms, this represents how sensitive the stock-price
is to new information - how ‘volatile’ the market’s assessment of the stock is.
This volatility parameter is very important, but we do not know it; instead,
we have to estimate the volatility for ourselves. There are two approaches: [2]
(ii) Historic volatility: here we use Time Series methods to estimate σ from
past price data. Clearly the more variability we observe in runs of past prices,
the more volatile the stock price is, and given enough data we can estimate
σ in this way. [3]
Implied volatility: match observed option prices to theoretical option prices.
For, the price we see options traded at tells us what the market thinks the
volatility is (estimating volatility this way works because the dependence is
monotone). [3]
Volatility surface. If the Black-Scholes model were perfect, these two es-
timates would agree (to within sampling error). But discrepancies can be
observed, which shows the imperfections of our model. Volatility graphed
against price S, or strike K, typically shows a volatility smile (or even smirk).
Graphed against S and K in 3 dimensions, we get the volatility surface. [3]
(iii) Volatility dependence is given by vega := ∂c/∂σ for calls, ∂p/∂σ for
puts. From the Black-Scholes formula (which gives the price explicitly as a
function of σ), one can check by calculus that ∂c/∂σ > 0, and similarly for
puts (or, use the result for calls and put-call parity). Options like volatility.
The more uncertain things are (the higher the volatility), the more valuable
protection against adversity becomes (the higher the option price). [3]
(iv) The classical view of volatility is that it is caused by future uncertainty,
and shows the market’s reaction to the stream of new information. How-
ever, studies taking into account periods when the markets are open and
closed [there are only about 250 trading days in the year] have shown that
the volatility is less when markets are closed than when they are open. This
suggests that trading itself is one of the main causes of volatility. [3]

The introduction of a small transaction tax would have the effect of de-
creasing trading. This would increase market stability: trading is one of
the causes of volatility; options like volatility. So trading tends to cause an
increase in trading in options, and so on. Ultimately this tends to induce
market instability. So conversely, market stability would benefit from a re-
duction in trading volumes caused by a transaction tax. [3]
[Mainly seen – lectures]
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Q3. American options.
(i) The discounting rate per unit time is 1 + ρ. With ‘up’ and ‘down’ factors
1 + u, 1 + d and ‘up’ and ‘down’ probabilities q, 1− q, the discounted price
process is a martingale iff (1 + u)q + (1 + d)(1− q) = 1 + ρ:

uq + d(1− q) = ρ; (u− d)q = ρ− d : q =
ρ− d
u− d

. [2]

(ii) To price the American put in this (CRR) binomial-tree model:
1. Draw a binary tree showing the initial stock value S and with the right
number, N , of time-intervals. [2]
2. Fill in the stock prices: after one time interval, these are Su (upper) and
Sd (lower); after two, Su2, Sud and Sd2; after i time-intervals, Sujdi−j at
the node with j ‘up’ steps and i− j ‘down’ steps. [2]
3. Using the strike price K and the prices at the terminal nodes, fill in the
payoffs (fN,j = max[K − SujdN−j, 0]) from the option at the terminal nodes
(where the values of the European and American options coincide). [2]
4. Work back down the tree one time-step. Fill in (a) the ‘European’ value at
the penultimate nodes as the discounted values of the terminal values, under
the risk-neutral (P ∗, Q) measure – ‘q times upper right plus 1−q times lower
right’; (b) the ‘intrinsic’ (early-exercise) value; (c) the American put value
as the higher of these. [2]
5. Treat these values as ‘terminal node values’, and fill in the values one
time-step earlier by repeating Step 4 for this ‘reduced tree’. [2]
6. Iterate. The value of the American put at time 0 is the value at the root
- the last node to be filled in. The ‘early-exercise region’ is the set where the
early-exercise value is the higher, the rest the ‘continuation region’. [2]
(iii) Connection with the Snell envelope.

Let Z = (Zn)Nn=0 be the payoff on exercising at time n. To price Zn, by
Un say, so as to avoid arbitrage: we work backwards in time. Recursively:

UN := ZN , Un−1 := max(Zn−1,
1

1 + ρ
E∗[Un|Fn−1]), [2]

the first alternative corresponding to early exercise, the second to the dis-
counted expectation under P ∗ (or Q), as usual. With discounting,

ŨN = Z̃N , Ũn−1 = max(Z̃n−1, E
∗[Ũn|Fn−1]) : [2]

(Ũn) is the Snell envelope of the discounted payoff process (Z̃n). [2]
[Seen – lectures]
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Q4 Optional stopping; optimal stopping.
(i) Optional Stopping Theorem (OST

The OS) states that for a stopping time T and a supermartingale X =
(Xn), if one of the following conditions holds:
(a) T is bounded;
(b) X is bounded;
(c) E[T ] <∞ and Xn −Xn−1) is bounded –
then XT is integrable, and E[XT ] ≤ E[X0.

If here X is a martingale, the E[XT ] = E[X0]. [4]
(ii) The OST fails in the gambling context where one either plays ‘the martin-
gale’ (bet on heads till one is first ahead, then quit; double stakes whenever
one loses), or just betting (heads, say) till one is first ahead and then quit.
In each case, if T is our stopping time, T < ∞ a.s., so eventual gain of one
is certain. So ST = 1, but S0 = 0. Neither strategy is viable in practice:
no bound can be put on losses before eventual gain, so one needs unlimited
capital (or credit)(and unlimited time without doubling stakes). This shows
that boundedness (or integrability) restrictions are needed for practical trad-
ing (or gambling!) strategies. [4]
(iii) With a uniformly integrable (UI) martingale (mg), X = (Xn), all the
randomness is concentrated in the final value – or closing value, X∞ (infinite
time-horizon) or XT (finite time-horizon T ). Then the mg converges to this
closing value, a.s. and in L1:

E[X∞|Fn]→ X∞ or E[XT |Fn]→ XT a.s. and in L1.

This applies in the Risk-Neutral Valuation Formula, with T < ∞, XT the
payoff h(ST ), h the payoff function and ST the terminal stock price

Vt = e−r(T−t)E∗[h(ST )|Ft]. [5]

Optimal stopping.
(iv) Here the aim is to optimise one’s expected payoff, given only current
information. A typical application is to American puts, where one uses the
least supermartingale majorant of (smallest supermg dominating) the dis-
counted payoff process Z̃. This is the discounted Snell envelope Ũ of Z̃. [4]
(v) With infinite time-horizon, one again meets the least supermartingale
majorant. (One doesn’t need a finite expiry-time to work back from, un-
like the Snell envelope.) The optimal stopping problem now involves a free
boundary-value problem. [3]
[Seen – lectures]
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Q5. (i) The exponential martingale for Brownian motion.
The MGF of X ∼ N(µ, σ2) is E[etX ] = exp{µt+ 1

2
σ2t2}, (∗),

given. For B = (Bt) Brownian motion (BM), write

Mt := exp{θBt −
1

2
θ2t}.

Then with F = (Ft) the Brownian filtration, for s ≤ t,

E[Mt|Fs] = E[exp{θBt −
1

2
θ2t}|Fs]

= E[exp{θ(Bs + (Bt −Bs))−
1

2
θ2s− 1

2
θ2(t− s)}|Fs]

= exp{θBs −
1

2
θ2s}.E[exp{θ(Bt −Bs))−

1

2
θ2(t− s)}|Fs],

taking out what is known. The first term on the right is Ms. The conditioning
in the second term can be omitted, by independent increments of BM. But
Bt −Bs ∼ N(0, t− s), which has MGF

E[exp{θ(Bt −Bs)}] = exp{1

2
θ2(t− s)}

(by (∗), with µ 7→ 0, θ2 7→ t− s, t 7→ θ). So the second term on RHS 1:

E[Mt|Fs] = Ms.

So M is a martingale. // [8]
(ii) By the normal MGF (given), MY (t) = E[etY ] = exp{µt+ 1

2
σ2t2}. Taking

t = 1, MY (1) = E[eY ] = exp{µ+ 1
2
σ2}. As X = eY , this gives

E[X] = E[eY ] = eµ+
1
2
σ2

. [2]

(iii) In the Black-Scholes model, stock prices are geometric Brownian mo-
tions, driven by stochastic differential equations

dS = S(µdt+ σdB), (GBM)

with B Brownian motion. This has solution (quote – Itô’s Lemma)

St = S0 exp{(µ− 1

2
σ2)t+ σBt}.
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So logSt = logS0 + (µ− 1
2
σ2)t+ σBt is normal, so St is lognormal. [5]

(iv) In Girsanov’s theorem, we have a process

Lt := exp{
∫ t

0

µsdBs −
1

2

∫ t

0

µ2
sds} (0 ≤ t ≤ T ),

with (µs) adapted (with
∫ T
0
µ2
sds < ∞), and L = (Lt) a martingale. By

(i), this martingale condition is satisfied for µt constant, identically equal
to µ, interpreted as the interest rate – of the risky stock, which Girsanov’s
theorem transforms by change of measure to r, the riskless interest rate. So
(i) enables us to apply Girsanov’s theorem, and so obtain the Black-Scholes
formula in continuous time. [5]
[(i), (iii), (iv), seen, Lectures; (ii), seen – Problems]
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Q6. Poisson process; compound Poisson process.
(i) The Poisson process N = (Nt) of rate λ has stationary independent in-
crements, and Nt is Poisson with parameter λt (so mean and variance λt).
The compound Poisson process CP (λ, F ) is the process S = (St), where
(Xn) are independent copies with law F , independent of N = (Nt), with
St :=

∑
n≤Nt

Xn. [2, 2]
(ii) The characteristic function (CF) of CP (λ, F ) follows from

ψ(u) = E[eiuSt ] = E[exp{iu(X1 + . . .+XNt)}]

=
∑
n

E[exp{iu(X1 + . . .+XNt)}|Nt = n].P (Nt = n)

=
∑
n

e−λtλntn/n!.E[exp{iu(X1 + . . .+Xn)}]

=
∑
n

e−λtλntn/n!.(E[exp{iuX1}])n

=
∑
n

e−λtλntn/n!.φ(u)n = exp{−λt(1− φ(u))}. [4]

(iii) Given Nt, St = X1 + . . . + XNt has mean NtEX = Ntµ and variance
Nt var X = Ntσ

2. As Nt is Poisson with parameter λt, Nt has mean λt and
variance λt. So by the Conditional Mean Formula,

E[St] = E[E[St|Nt]] = E[Ntµ] = λtµ. [2]

By the Conditional Variance Formula,

var St = E[var(St|Nt)] + var E[St|Nt]

= E[Ntvar X] + var([Nt E[X])

= E[Nt].var X + var Nt.(EX)2

= λt(E[X2]− (E[X])2) + λt.(E[X])2

= λtE[X2] = λt(σ2 + µ2). [5]

(iv) As the convolution of two Poisson distributions P (λ) and P (µ) is Poisson
P (λ + µ), a Poisson distribution with large parameter is the convolution of
many (Poisson) distributions, each with finite mean and variance. So by the
Central Limit Theorem, it is approximately normal. So by (ii), for λt large,

Z := (St − λtµ)/
√
λtE[X2] ∼ N(0, 1) : St ∼ λtµ+ Z

√
λtE[X2],

giving a normal approximation to the total-claims distribution. [5]
[Seen – lectures]
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