
M5A22 EXAMINATION SOLUTIONS 2015-16

Q1. (i) Utility. A utility function is a mathematical reflection of the ‘law
of diminishing returns’: an amount of wealth becomes less important as
its owner’s wealth increases. It also describes an agent’s attitude to risk:
wealthier people can better afford to risk a given sum than poorer ones. Be-
fore Black-Scholes (BS), the question of how much an option is worth was
thought to be ill-defined: the view then was that this would depend on the
utility function of the agent. For, an option is basically an insurance policy
(against adverse stock-price movements), and nervous people will pay more
for insurance than confident ones. It turns out that this view is incorrect in
complete markets ((iii) below). [5]
(ii) No arbitrage (NA). An arbitrage opportunity is the chance to ”make
something out of nothing”: a trading strategy that starts with nothing, can-
not lead to loss, but may lead to gain. The NA assumption is the most
important assumption we make (in this course). It is equivalent to existence
of equivalent martingale measures (EMMs) (risk-neutral measures). It is the
basis of the arbitrage pricing technique (APT), by which we can price assets
assuming only NA – remarkable, as one can obtain quantitative results from
qualitative assumptions.

We assume that financial agents are selfish and insatiable. So if presented
with an arbitrage opportunity – ”free money” – they will take it, in unlim-
ited quantities – and so will everyone else. So anyone exposing themselves to
being exploited in this way will be used as a ”money pump” by the market,
and withdraw or be driven from the market, before or at bankruptcy. [5]
(iii) Completeness. A market is complete if all contingent claims (options)
can be replicated, by a suitable combination of cash and stock.

Completeness is equivalent to uniqueness of EMMs. As EMMs are used in
the pricing formula (Risk-Neutral Valuation, Fundamental Theorem of Asset
Pricing), in complete markets prices are unique.

Real markets are incomplete. One observes differences in prices, e.g. in
the bid-ask spread. But we assume completeness here for simplicity. [5]
(iv) No utility in BS. Utility functions are absent in the BS formula, be-
cause there markets are assumed complete. In a BS market, any option is
financially equivalent to a combination of cash and stock. This can be im-
mediately priced (count the cash; count the stock; look up the stock price;
do the arithmetic) without reference to any utility function. [5]
[Seen – lectures]
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Q2. Martingale transforms; stochastic integrals; trading and gains from
trade.
(a) Call a process C = (Cn)

∞
n=1 previsible (or predictable) if

Cn is Fn−1 −measurable for all n ≥ 1. [3]

(b) Think of Cn as your stake on play n (C0 is not defined, as there is no
play at time 0). Previsibility says that you have to decide how much to stake
on play n based on the history before time n (i.e., up to and including play
n− 1). Your winnings on game n are Cn∆Xn = Cn(Xn −Xn−1). Your total
(net) winnings up to time n are

Yn =
n∑

k=1

Ck∆Xk =
n∑

k=1

Ck(Xk −Xk−1).

We write

Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0), and call C •X the martingale (mg) transform of X by C. [4]

(c) Theorem. (i) If C is bounded and previsible and X is a martingale,
C •X is a martingale null at zero.

Proof. With Y = C •X as above,

E[Yn − Yn−1|Fn−1] = E[Cn(Xn −Xn−1)|Fn−1]

= CnE[(Xn −Xn−1)|Fn−1]

(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken out),

= 0, (as X is a martingale). [8]

(d) In mathematical finance, X plays the role of a price process, C plays
the role of our trading strategy, and the mg transform C •X plays the role
of our gains (or losses!) from trading. The previsibility of C corresponds to
no insider trading: one has to decide on one’s current trades in the light of
current information, not future information. [5]

[Seen – lectures]
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Q3. Hedging.
(i) What is hedging? Who hedges, and why? Hedging (useful also for pricing
options!) is protecting oneself against loss by buying the opposite of one’s
position. It is typically engaged in by sellers of options. One sells an op-
tion for money, to someone who is buying insurance, and one hopes to make
money from it. An option seller who remains unhedged has no protection
against the financial loss involved in having the option sold exercised against
him (it will not be exercised if there is no loss). His position is then naked,
and this may be too dangerous. [4]
(ii) Types of hedging. The commonest and simplest type of hedging is delta
hedging, using ∆ := ∂C/∂S. The seller buys enough stock to offset his loss if
the call option is exercised against him, to first order. Similarly for the other
Greeks. [4]
(iii) Discrete v. continuous time. In discrete time, one can hedge in a com-
plete market, but in an incomplete market there may be unhedgeable risk.
The option seller rebalances his portfolio at each time point.

In continuous time, this rebalancing is possible in principle. Black-Scholes
markets are complete; the driving noise process is Brownian motion (BM);
discounted prices are martingales under the EMM, P ∗ or Q. The Martin-
gale Representation Theorem applies, and shows that option prices can be
represented as Brownian integrals. The integrand corresponds to the hedging
strategy. A hedger will need to rebalance continuously, to follow this strategy.

In practice, this cannot be done. For, the sample paths of BM have infi-
nite variation (as their quadratic variation is finite, by Lévy’s theorem). Not
only would rebalancing involve an infinite amount of trading (and so infinite
costs, as in reality transaction costs do exist), but would also have to be
done extremely roughly. Rebalancing would be like tryng to ride a bicycle,
following a Brownian-like fractal path – impossible in practice. [6]
(iv) Complete or partial hedging? It depends on how the market moves (are
you glad you sold the option or sorry)? To trade, one needs to take a position
– commit funds, in the presence of uncertainty. One should not do so unless
one expects to make money, at the expense of one’s counter-party – who en-
gages in the opposite trade hoping or expecting to make money out of you.
To trade, one should have a judgement of where the market is going, based
on knowledge and experience, and be prepared to back it. If the market
moves against one, hedge to unwind one’s position – no profit, but no loss
either. In any case, one needs to know how to do this – just as one needs to
know where the (fire or emergency) exit is in a building, plane etc. [6]
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[Mainly seen in lectures]
Q4. Vega.
(a) Vega for calls. The Black-Scholes call price is

Ct := SΦ(d+)−Ke−r(T−t)Φ(d−), d± :=
log(S/K) + (r ± 1

2
σ2)τ

σ
√
τ

. (BS)
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Exponentiating the definition of d+,

ed+σ
√
τ = (S/K).erτ .e

1
2
σ2τ .

Combining,

ϕ(d−) = ϕ(d+).(S/K).erτ : Ke−rτϕ(d−) = Sϕ(d+). (∗)

Differentiating (BS) partially w.r.t. σ gives

v := ∂C/∂σ = Sϕ(d+)∂d+/∂σ −Ke−rτϕ(d−)∂d−/∂σ.

So by (∗),

v = Sϕ(d+)∂(d+ − d−)/∂σ = Sϕ(d+)∂(σ
√
τ)/∂σ = Sϕ(d+)

√
τ > 0. [8]

(b) Vega for puts.
The same argument gives v := ∂P/∂σ > 0, starting with the Black-

Scholes formula for puts. Equivalently, we can use put-call parity

S + P − C = Ke−rτ : ∂P/∂σ = ∂C/∂σ > 0. [3]

(c) Interpretation.
”Options like volatility”: the more uncertainty, i.e. the higher the volatil-

ity, the more the ”insurance policy” of an option is worth. So vega is positive
for positions long in the option – but negative for short positions. [3]
(d) Vega for American options.

The discounted value of an American option is the Snell envelope Ũn−1 =
max(Z̃n−1, E

∗[Ũn|Fn−1]) of the discounted payoff Z̃n (exercised early at time
n < N), with terminal condition UN = ZN , ŨN = Z̃N . As σ increases, the
Z-terms increase (vega is positive for European options). As the Zs increase,
the Us increase (above: backward induction on n – dynamic programming,
as usual for American options). Combining: as σ increases, the U -terms
increase. So vega is also positive for American options. [6]
[Seen – Problems]
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Q5. Black-Scholes formula (BS).
(a) The SDE for GBM(µ, σ) is dSt = St(µdt + σdWt) with W = (Wt) BM.
Its solution is St = S0 exp{(µ− 1

2
σ2)t+ σWt}. [4]

(b) If we change probability measure from P to P ∗ so as to pass from
GBM(µ, σ) to GBM(r, σ), and from time-interval [0, t] to [t, T ], with W
a P ∗-Brownian motion we can write ST explicitly as

ST = St exp{(r −
1

2
σ2)(T − t) + σ(WT −Wt)}.

Now WT −Wt is normal N(0, T − t), so (WT −Wt)/
√
T − t =: Z ∼ N(0, 1):

ST = s exp{(r − 1

2
σ2)(T − t) + σZ

√
T − t}, s := St, Z ∼ N(0, 1).

So by the Risk-Neutral Valuation Formula, the pricing formula is

F (t, x) = e−r(T−t)

∫ ∞

−∞

e−
1
2
x2

√
2π

[s exp{(r− 1

2
σ2)(T − t)+σ(T − t)

1
2x}−K]+dx.

[6]
(c) To derive BS, evaluate the integral. First, [...] > 0 where

S0 exp{(r −
1

2
σ2)T + σ

√
Tx} > K, (r − 1

2
σ2)T + σ

√
Tx > log(K/S0) :

x > [log(K/S0)− (r − 1

2
σ2)T ]/σ

√
T = c, say. So.

C0 = S0

∫ ∞

c
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1
2
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and the last term is Ke−rTΦ(−c) = Ke−rTΦ(d−). The remaining integral is∫ ∞

c
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c−σ
√
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exp{−1

2
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√
2π

= 1− Φ(c− σ
√
T ) = Φ(−c+ σ

√
T ) = Φ(d+),

as −c + σ
√
T = d+ when t = 0. So the option price is given in terms of the

initial price S0, strike price K, expiry T , interest rate r and volatility σ by

C0 = S0Φ(d+)−Ke−rTΦ(d−), d± := [log(S/K) + (r ± 1

2
σ2)T ]/σ

√
T . //

[10]
[Seen – lectures]
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Q6. Real options. (a) With starting value x, to solve the optimal stopping
problem

V (x) := max
τ

E[(Xτ − I)e−rτ ]

– buying an asset of value X for a cost I, at time τ chosen optimally. [3]
(b) If µ ≤ 0, the (mean) value of the project will decrease. So we invest
immediately if x > I (with immediate profit x − I > 0), and do not invest
otherwise. If µ > r, the (mean) growth will swamp the riskless interest rate
(in the long run – Law of Large Numbers), so the investment is worthwhile:
again invest immediately as there is no point in waiting. If µ = r, there is
no point in taking the risk of investing, so we should not invest. [3]
(c) There remains the case 0 < µ < r. Using the infinitesimal generator, one
gets the differential equation (Bellman equation)

1

2
σ2x2V ′′(x) + µxV ′(x)− rV (x) = 0,

with V (0) = 0 (we get nothing from something worth nothing). A suitable
trial solution is V (x) = Cxp. This leads to a quadratic equation in p:

Q(p) :=
1

2
σ2p(p− 1) + µp− r = 0.

The product of the roots is negative, and Q(0) = −r < 0, Q(1) = µ− r < 0.
So one root p1 > 1 and the other p2 < 0. [4]
(d) The general solution is V (x) = C1x

p1 +C2x
p2 , but from V (0) = 0 we get

C2 = 0, so V (x) = C1x
p1 , or V (x) = Cxp1 . If x∗ is the critical value at which

it is optimal to invest, ‘value matching’ and ‘smooth pasting’ give

V (x∗) = x∗ − I, V ′(x∗) = 1. [4]

From these two equations, we can find C and x∗:

V ′(x∗) = Cp1(x
∗)p1−1 = 1, C = (x∗)1−p1/p1.

Then value matching gives

C(x∗)p1 = x∗ − I, x∗/p1 = x∗ − I, I = x∗.(1− 1/p1) : x∗ =
p1

(p1 − 1)
I.

So we should not invest if the initial value x is below x∗ = qI, where
q := p1/(p1 − 1) (”Tobin’s q”). [4]
(e) Arbitrage arguments are absent here, as these depend on repeated trad-
ing either way, and this investment is a one-off, one way. [2]
[Seen, lectures, (a) - (d); (e) unseen] N. H. Bingham
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