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M3F22 SOLUTIONS 4. 10.11.2017

Q1. Since f is clearly non-negative, to show that f is a (probability density)
function (in two dimensions), it suffices to show that f integrates to 1:∫ ∞

−∞

∫ ∞
−∞

f(x, y)dxdy = 1, or

∫ ∫
f = 1.

Write

f1(x) :=

∫ ∞
−∞

f(x, y)dy, f2(y) :=

∫ ∞
−∞

f(x, y)dx.

Then to show
∫ ∫

f = 1, we need to show
∫∞
−∞ f1(x)dx = 1 (or

∫∞
−∞ f2(y)dy =

1). Then f1, f2 are densities, in one dimension. If f(x, y) = fX,Y (x, y) is the
joint density of two random variables X, Y , then f1(x) is the density fX(x)
of X, f2(y) the density fY (y) of Y (f1, f2, or fX , fY , are called the marginal
densities of the joint density f , or fX,Y ).

To perform the integrations, we have to complete the square:

(1− ρ2)Q ≡
[(y − µ2

σ2

)
− ρ
(x− µ1

σ1

)]2
+ (1− ρ2)

(x− µ1

σ1

)2
(reducing the number of occurrences of y to 1, as we intend to integrate out
y first). Then (taking the terms free of y out through the y-integral): for

cx := µ2 + ρ
σ2
σ1

(x− µ1),

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1
√

2π

∫ ∞
−∞

1

σ2
√

2π
√

1− ρ2
exp

(−1
2
(y − cx)2

σ2
2(1− ρ2)

)
dy.

(∗)
The integral is 1 (‘normal density’). So

f1(x) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1
√

2π
,

which integrates to 1 (‘normal density’), proving
Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal
density functions f1(x), f2(y) (one-dimensional). So we can write

f(x, y) = fX,Y (x, y), f1(x) = fX(x), f2(y) = fY (y).
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Fact 2. X, Y are normal: X is N(µ1, σ
2
1), Y is N(µ2, σ

2
2). For, we showed

f1 = fX to be the N(µ1, σ
2
1) density above, and similarly for Y by symmetry.

Fact 3. EX = µ1, EY = µ2, varX = σ2
1, varY = σ2

2.
This identifies four out of the five parameters: two means µi, two variances

σ2
i . Next, recall conditional densities [L9]:

fY |X(y|x) := fX,Y (x, y)/fX(x) = fX,Y (x, y)/

∫ ∞
−∞

fX,Y (x, y)dy.

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given X = x is N(µ2 + ρσ2

σ1
(x −

µ1), σ2
2(1− ρ2)).

Proof. Go back to completing the square (or, return to (*) with
∫

and dy
deleted):

f(x, y) =
exp(−1

2
(x− µ1)

2/σ2
1)

σ1
√

2π
.
exp(−1

2
(y − cx)2/(σ2

2(1− ρ2)))
σ2
√

2π
√

1− ρ2
.

The first factor is f1(x), by Fact 1. So, fY |X(y|x) = f(x, y)/f1(x) is the
second factor:

fY |X(y|x) =
1

√
2πσ2

√
1− ρ2

exp
( −(y − cx)2

2σ2
2(1− ρ2)

)
,

where cx is the linear function of x given below (*). //

This not only completes the proof of Fact 4 but gives Facts 5 and 6:
Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = µ2 + ρ
σ2
σ1

(x− µ1).

Fact 6. The conditional variance of Y given X = x is

var(Y |X = x) = σ2
2(1− ρ2).

Fact 7. The correlation coefficient of X, Y is ρ.
Proof.

ρ(X, Y ) := E
[(X − µ1

σ1

)(Y − µ2

σ2

)]
=

∫ ∫ (x− µ1

σ1

)(y − µ2

σ2

)
f(x, y)dxdy.
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Substitute for f(x, y) = c exp(−1
2
Q), and make the change of variables u :=

(x− µ1)/σ1, v := (y − µ2)/σ2:

ρ(X, Y ) =
1

2π
√

1− ρ2

∫ ∫
uv exp

(−[u2 − 2ρuv + v2]

2(1− ρ2)

)
dudv.

Completing the square, [u2 − 2ρuv + v2] = (v − ρu)2 + (1− ρ2)u2. So

ρ(X, Y ) =
1√
2π

∫
u exp

(
−u

2

2

)
du.

1
√

2π
√

1− ρ2

∫
v exp

(
−(v − ρu)2

2(1− ρ2)

)
dv.

Replace v in the inner integral by (v−ρu)+ρu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the
second is ρu (‘normal density’). So (‘normal variance’)

ρ(X, Y ) =
1√
2π
.ρ

∫
u2 exp

(
−u

2

2

)
du = ρ.

This completes the identification of all five parameters in the bivariate
normal distribution: two means µi, two variances σ2

i , one correlation ρ.

Fact 8. The bivariate normal law has elliptical contours.
For, the contours are Q(x, y) = const, which (Galton) are ellipses.

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), 102-6)
M(t), or MX(t), := E(etX). For X normal N(µ, σ2),

M(t) =
1

σ
√

2π

∫
etx exp(−1

2
(x− µ)2/σ2)dx.

Change variable to u := (x− µ)/σ:

M(t) =
1√
2π

∫
exp(µt+ σut− 1

2
u2)du.

Completing the square,

M(t) = eµt.
1√
2π

∫
exp(−1

2
(u− σt)2)du.e

1
2
σ2t2 ,

or MX(t) = exp(µt+ 1
2
σ2t2) (recognising that the central term on the right is

1 – ‘normal density’) . So MX−µ(t) = exp(1
2
σ2t2). Then (check) µ = EX =
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M ′
X(0), varX = E[(X − µ)2] = M ′′

X−µ(0).
Similarly in the bivariate case: the MGF is MX,Y (t1, t2) := E exp(t1X +

t2Y ). In the bivariate normal case:

M(t1, t2) = E(exp(t1X + t2Y )) =

∫ ∫
exp(t1x+ t2y)f(x, y)dxdy

=

∫
exp(t1x)f1(x)dx

∫
exp(t2y)f(y|x)dy.

The inner integral is the MGF of Y |X = x, which is N(cx, σ
2
2, (1− ρ2)), so is

exp(cxt2 + 1
2
σ2
2(1− ρ2)t22). By Fact 5 cxt2 = [µ2 + ρσ2

σ1
(x− µ1)]t2, so

M(t1, t2) = exp(t2µ2− t2
σ2
σ1
µ1 +

1

2
σ2
2(1− ρ2)t22)

∫
exp([t1 + t2ρ

σ2
σ1

]x)f1(x)dx.

Since f1(x) is N(µ1, σ
2
1), the inner integral is a normal MGF, which is thus

exp(µ1[t1 + t2ρ
σ2
σ1

] + 1
2
σ2
1[. . .]2). Combining the two terms and simplifying:

Fact 9. The joint MGF is

MX,Y (t1, t2) = M(t1, t2) = exp(µ1t1 + µ2t2 +
1

2
[σ2

1t
2
1 + 2ρσ1σ2t1t2 + σ2

2t
2
2]).

Fact 10. X, Y are independent if and only if ρ = 0.

Proof. For densities: X, Y are independent iff the joint density fX,Y (x, y) fac-
torises as the product of the marginal densities fX(x).fY (y) (see e.g. Haigh
(2002), Cor. 4.17).

For MGFs: X, Y are independent iff the joint MGF MX,Y (t1, t2) factorises
as the product of the marginal MGFs MX(t1).MY (t2). From Fact 9, this oc-
curs iff ρ = 0. Similarly with CFs, if we prefer to work with them. //

Note. We can re-write Fact 5 above as

E[Y |X] = µ2 +
ρσ1
σ2

(X − µ1).

So as E[X] = µ1, this illustrates the Conditional Mean Formula (II.4 Prop-
erty 6, L10):

E[E[Y |X]] = µ2 +
ρσ1
σ2

(E[X]− µ1) = µ2 = E[Y ].

Similarly, Fact 6 illustrates the Conditional Variance Formula. NHB
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