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M3F22 SOLUTIONS 4. 10.11.2017

Q1. Since f is clearly non-negative, to show that f is a (probability density)
function (in two dimensions), it suffices to show that f integrates to 1:

/Z/Zf(x,y)dmdyzl, o [ [r-1

fix) = / T Hady, oy = / " flasy)de.

Then to show [ [ f =1, we need to show [*° fi(z)dz =1 (or [* fo(y)dy =
1). Then fi, fo are densities, in one dimension. If f(x,y) = fxy(z,y) is the
joint density of two random variables X, Y, then f;(x) is the density fx(x)
of X, fo(y) the density fy(y) of Y (fi, fo, or fx, fy, are called the marginal
densities of the joint density f, or fxy).

To perform the integrations, we have to complete the square:

(1— )0 = [(y—ua) _p(w—u1>]2+(1_pg)($—m>2

02 01 01

Write

(reducing the number of occurrences of y to 1, as we intend to integrate out
y first). Then (taking the terms free of y out through the y-integral): for

Cyp = Mo+ p 2(9€—M1),

o
01

exp(—5(z — pu1)?/0%)

- > 1 _%(y_cw>2
fi(z) = o2 /_OO o —1—p2 exp( (1= ) )dy.

The integral is 1 (‘normal density’). So

) = b= )
o1V 2w ’
which integrates to 1 (‘normal density’), proving
Fact 1. f(z,y) is a joint density function (two-dimensional), with marginal

density functions fi(x), fo(y) (one-dimensional). So we can write

flz,y) = fxy(z,y), fi(z) = fx(z), f2(y) = fr(y).
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Fact 2. X,Y are normal: X is N(u1,0%), Y is N(us,03). For, we showed
f1 = fx to be the N(uy,0?) density above, and similarly for Y by symmetry.
Fact 3. EX = i1, EY = g, varX = af,varY = 03.

This identifies four out of the five parameters: two means p;, two variances
o?. Next, recall conditional densities [L9]:

fY\X(y|$) = fX,Y(iU,Z/)/fX(l’) = fX,Y(fL’,y)/ /_OO fX,Y(%y)dy

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given X = x is N(ug + pg—f(a: —

m), o3(1—p?).
Proof. Go back to completing the square (or, return to (*) with [ and dy
deleted):

exp(—3(z — m)*/of) exp(—3(y — c)*/(03(1 - P))

o1V 2w . o9V 2m\/1 — p?

The first factor is fi(x), by Fact 1. So, fyx(y|z) = f(z,y)/fi(z) is the
second factor:

fr,y) =

_ 1 ex —lv )
fY|X(y|m>_\/%O_2\/1_7p2 p(?a%(l—P2)>7

where ¢, is the linear function of = given below (*). //

This not only completes the proof of Fact 4 but gives Facts 5 and 6:
Fact 5. The conditional mean E(Y'|X = z) is linear in x:

o
EY|X =x)=p+ pa—z(l’ — ).
1
Fact 6. The conditional variance of Y given X = z is
var(Y|X = x) = o5(1 — p?).

Fact 7. The correlation coefficient of X, Y is p.
Proof.

p(X’Y)::E[(X—u1> Y — uz // x—ul y u2>f<x y)ddy.
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Substitute for f(z,y) = cexp(—1Q), and make the change of variables u :=
(@ —pa)/o1, v = (y — p2)/o2:

—[u? — 2puv + v?]

p(X,Y) = 27T\/1_7//uvexp STy )dudv.

Completing the square, [u? — 2puv + v?] = (v — pu)? + (1 — p*)u?. So

p(X,Y) = \/_/uexp( 2) m\/f/vexp< U_pz))>dv.

Replace v in the inner integral by (v—pu)-+pu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the
second is pu (‘normal density’). So (‘normal variance’)

1 u?
p(X,Y) = \/—2_7T.p/u2 exp (—§> du = p.

This completes the identification of all five parameters in the bivariate
normal distribution: two means y;, two variances o, one correlation p.

Fact 8. The bivariate normal law has elliptical contours.
For, the contours are Q(z,y) = const, which (Galton) are ellipses.

Moment Generating Function (MGF'). Recall (see e.g. Haigh (2002), 102-6)
M(t), or Mx(t), := E(e). For X normal N (u,o?),

M(t) = Wl% / ot exp(—4 (x — p)?fo%)da

Change variable to u := (x — u)/o:

1 1
M(t) = Wor /exp(ut + out — §u2)du.

Completing the square,

o2¢2

M(t) = et

\/_/exp —Z(u— ot)?)du.e3”

or My (t) = exp(ut + 30t?) (recognising that the central term on the right is
1 — ‘normal density’) . So My_,(t) = exp(302t?). Then (check) p = EX =
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M (0), varX = E[(X — p)’] = My_,(0).
Similarly in the bivariate case: the MGF is Mx y (t1,t2) := Eexp(t; X +
t2Y'). In the bivariate normal case:

M(t1,ts) = FE(exp(ti X +1tY)) = //exp(tlx + toy) f(z,y)dxdy

= /exp(tlx)fl(x)dx/exp(tgy)f(y]x)dy.

The inner integral is the MGF of Y| X = x, which is N(c,, 03, (1 — p?)), so is
exp(cuty + 505(1 — p?)t3). By Fact 5 coty = [p2 + pZ(x — pa)]ta, s0

o 1 o
M(tl, tg) = exp(tgug — t20—2,U1 + 50%(1 — p2)t§) /exp([tl + tgpf]x)fl(x)dx
1 1

Since fi(x) is N(uy,0%), the inner integral is a normal MGF, which is thus
exp(pu [ty + 12p2] + 10%[...]*). Combining the two terms and simplifying:
Fact 9. The joint MGF is

1
MX7y(t1, tg) = M(tl, tg) = exp(,ultl =+ [I,th + 5[0‘%2&% =+ 2p0'10'2t1t2 + Ugtg])

Fact 10. X,Y are independent if and only if p = 0.

Proof. For densities: X,Y are independent iff the joint density fxy(x,y) fac-
torises as the product of the marginal densities fx(z).fy(y) (see e.g. Haigh
(2002), Cor. 4.17).

For MGFs: XY are independent iff the joint MGF My y (t1,t2) factorises
as the product of the marginal MGFs Mx(t1).My (t2). From Fact 9, this oc-
curs iff p = 0. Similarly with CFs, if we prefer to work with them. //

Note. We can re-write Fact 5 above as
o
BIYIX] = i + 22X — ).
2
So as E[X]| = p, this illustrates the Conditional Mean Formula (I1.4 Prop-

erty 6, L10):
BEWY|X] = o+ L (ELX] = ) = o = E[Y)

Similarly, Fact 6 illustrates the Conditional Variance Formula. NHB



