m3f22soln10

M3F22 SOLUTIONS 10. 15.12.2017

Q1. Exponential distributions and renewal.
(i) Recall the exponential law $E(\lambda)$: density and distribution function

$$
f(x)=\lambda e^{-\lambda x}, \quad F(x)=1-e^{-\lambda x} \quad(x>0)
$$

The Laplace transform of f (Laplace-Stieltjes transform, or LST, of F) is

$$
\begin{aligned}
\hat{F}(s) & =\int_{[0, \infty)} e^{-\lambda s} d F(x) \\
& =\int_{[0, \infty)} \lambda e^{-\lambda s} \cdot e^{-\lambda x} d x \\
& =\lambda /(\lambda+s)
\end{aligned}
$$

The LST of the nth convolution $F^{* n}$ of F is the nth power of this. Summing over n : for the renewal function

$$
U(x)=\sum_{n=0}^{\infty} F^{* n}(x),
$$

its LST is

$$
\begin{gathered}
\hat{U}(s)=\sum_{n=0}^{\infty}(\lambda /(\lambda+s))^{n}=\frac{1}{(1-\lambda /(\lambda+s))}=\frac{1}{s /(\lambda+s)}=(\lambda+s) / s: \\
\hat{U}(s)=1+\lambda / s
\end{gathered}
$$

Now with δ_{0} the Dirac measure at 0 (probability measure with all its mass 1 at the origin 0), its LST is 1 . The LST of Lebesgue measure on $(0, \infty)$ (the measure with mass x on $(0, x))$ is, putting $u:=s x$,

$$
\int_{0}^{\infty} e^{-s x} d x=\int_{)}^{\infty} e^{-u} d u / s=1 / s
$$

Combining, for $F=E(\lambda)$,

$$
U(x)=\delta_{0}(x)+\lambda x \quad(x \geq 0)
$$

Interpretation. The first term 1 here just says that, by definition, there is always a renewal at time 0 (we always start with a new item). After that, because the hazard rate for $E(\lambda)$ is the constant λ, the expected number of renewals in $(0, x)$ is λx.
(ii) Recall that the mean μ of $E(\lambda)$ is, putting $u:=\lambda x$ as above,

$$
\mu=\int_{0}^{\infty} x \cdot f(x) d x=\int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} d x=\int_{0}^{\infty} u e^{-u} d u / \lambda=1 / \lambda
$$

(the integral is $\Gamma(2)=1!=1$, or check by integration by parts). So the Renewal Theorem holds:

$$
E(t)=E[N(t)]=1+t \lambda=1+t / \mu \sim t / \mu \quad(t \rightarrow \infty) .
$$

Blackwell's renewal theorem holds here with equality, as

$$
U(x+h)-U(x)=h \lambda=h / \mu .
$$

The Key Renewal Theorem holds, as

$$
\begin{aligned}
Z(t) & =(z * U)(t)=\int_{0}^{t} z(u) \cdot u(t-u) d u=\int_{0}^{t} z(u) \cdot \lambda d u \\
& =\int_{0}^{t} z(u) d u / \mu \rightarrow \int_{0}^{\infty} z(u) d u / \mu \quad(t \rightarrow \infty)
\end{aligned}
$$

Q2. Gamma distributions and Renewal.
(i) Density.

$$
\int f=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-\lambda x} \cdot \lambda^{\alpha} x^{\alpha-1} d x=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-u} \cdot u^{\alpha-1} d u=1
$$

putting $u:=\lambda x$ and using the definition of the Gamma function.
(ii) Mean.

$$
\begin{aligned}
\mu & =\int x f(x) d x=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} x \cdot e^{-\lambda x} \cdot \lambda^{\alpha} x^{\alpha-1} d x \\
& =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty}(u / \lambda) \cdot e^{-u} \cdot u^{\alpha-1} d u=\frac{1}{\lambda \Gamma(\alpha)} \int_{0}^{\infty} e^{-u} \cdot u^{\alpha} d u \\
& =\frac{\Gamma(\alpha+1)}{\lambda \Gamma(\alpha)} \\
& =\alpha / \lambda
\end{aligned}
$$

(iii) $L S T: \hat{f}(s)$.

$$
\begin{aligned}
\hat{f}(s) & =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-s x} \cdot e^{-\lambda x} \cdot \lambda^{\alpha} x^{\alpha-1} d x=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-(\lambda+s) x} \cdot \lambda^{\alpha} x^{\alpha-1} d x \\
& ==\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} e^{-u}\left(\frac{\lambda}{\lambda+s}\right)^{\alpha} u^{\alpha-1} d u \quad(u:=(\lambda+s) x) \\
& =\left(\frac{\lambda}{\lambda+s}\right)^{\alpha} .
\end{aligned}
$$

(iv) $L S T: \hat{U}(s)$.

$$
\begin{aligned}
\hat{U}(s) & =\frac{1}{1-\hat{f}(s)}=\frac{1}{1-\left(\frac{\lambda}{\lambda+s}\right)^{\alpha}} \\
& =\frac{(\lambda+s)^{\alpha}}{(\lambda+s)^{\alpha}-\lambda^{\alpha}}=\frac{(\lambda+s)^{\alpha}}{\lambda^{\alpha}\left[\left(\left(1+\frac{s}{\lambda}\right)^{\alpha}-1\right]\right.}
\end{aligned}
$$

(v) As $s \downarrow 0$,

$$
(\lambda+s)^{\alpha} / \lambda^{\alpha} \rightarrow 1, \quad\left[\left(\left(1+\frac{s}{\lambda}\right)^{\alpha}-1\right] \sim \sigma . s / \lambda=\mu s\right.
$$

by the (generalised) Binomial Theorem (Newton: see M3H). So

$$
\hat{U}(s) \sim \frac{1}{\mu s} \quad(s \downarrow 0)
$$

(vi) So by HLK with $\rho=1$,

$$
U(x) \sim x / \mu \quad(x \rightarrow \infty)
$$

giving the Renewal Theorem in this case.

NHB

