m3f33prob3

M3F22 PROBLEMS 3. 27.10.2017

Q1. (i) Show that the volume of a sphere of radius r is $V=4 \pi r^{3} / 3$.
(ii) Show that the surface area of a sphere of radius r is $S=4 \pi r^{2}$.
(iii) Derive each from the other.

Q2. Show that the volume of the ellipsoid

$$
x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1
$$

is $V=4 \pi a b c / 3$.
Q3. (i) Show that the volume of a tetrahedron of base area A and height h is $V=A h / 3$.
(ii) Show that this holds also for 'generalised tetrahedrons', obtained by taking any plane shape with area A and boundary curve C, and joining the points of C to some vertex V a height h above C.

Q4. (i) Show that the volume of revolution obtained by rotating a curve $y=f(x)$ about the x-axis between a and b is $V=\pi \int_{a}^{b} f(x)^{2} d x$.
(ii) Hence re-derive the volume of a sphere.

Q5 (Generalised Pythagoras theorem: Bouligand). A right-angled triangle has sides 1 (the hypotenuse), 2 and 3 . A semicircle (or any other plane shape with a flat base) of area A_{1} is drawn with base side 1 ; similar copies of this are drawn with bases sides 2 and 3 , with areas A_{2}, A_{3}. Show that

$$
A_{1}=A_{2}+A_{3}
$$

Deduce Pythagoras' theorem on taking these shapes to be squares.

