m3f33prob1

M3F22 PROBLEMS 1. 13.10.2017

Q1 (Random sums; Wald's identity).

If the X_n are independent and identically distributed (iid), non-negative integer-valued with PGF P(s), and N is non-negative integer-valued with PGF Q(s) and independent of the X_n , show that the random sum

$$Y := X_1 + \dots + X_N$$

has PGF

$$R(s) = Q(P(s)).$$

Deduce (a form of Wald's identity) that

$$E[Y] = E[X_1 + \dots + X_N] = E[X_1] \cdot E[N].$$

(Context: Insurance, Ch. VIII; Xs the claim sizes, N the number of claims.)

Q2 (Compound Poisson distribution). If N is Poisson $P(\lambda)$ and the X_n are iid (not necessarily integer-valued) with CF $\phi(t)$, mean μ and variance σ^2 , show that Y has CF

$$\psi(u) = \exp\{-\lambda(1 - \phi(u))\},\$$

mean $\lambda \mu$ and variance $\lambda E[X^2] = \lambda(\mu^2 + \sigma^2)$.

Q3 (Compound Poisson process).

Show that if claims X_n arrive in a Poisson process of rate λ , and have CF, mean and variance as above, the claim total at time t has CF, mean and variance

$$\psi(u) = \exp\{-\lambda t(1-\phi(u))\}, \quad \lambda t\mu, \quad \lambda t E[X^2] = \lambda t(\mu^2 + \sigma^2).$$

NHB