m3f33prob1

M3F22 PROBLEMS 1. 13.10.2017

Q1 (Random sums; Wald's identity).
If the X_{n} are independent and identically distributed (iid), non-negative integer-valued with PGF $P(s)$, and N is non-negative integer-valued with PGF $Q(s)$ and independent of the X_{n}, show that the random sum

$$
Y:=X_{1}+\cdots+X_{N}
$$

has PGF

$$
R(s)=Q(P(s))
$$

Deduce (a form of Wald's identity) that

$$
E[Y]=E\left[X_{1}+\cdots+X_{N}\right]=E\left[X_{1}\right] \cdot E[N] .
$$

(Context: Insurance, Ch. VIII; X s the claim sizes, N the number of claims.)
Q2 (Compound Poisson distribution). If N is Poisson $P(\lambda)$ and the X_{n} are iid (not necessarily integer-valued) with $\mathrm{CF} \phi(t)$, mean μ and variance σ^{2}, show that Y has CF

$$
\psi(u)=\exp \{-\lambda(1-\phi(u))\},
$$

mean $\lambda \mu$ and variance $\lambda E\left[X^{2}\right]=\lambda\left(\mu^{2}+\sigma^{2}\right)$.
Q3 (Compound Poisson process).
Show that if claims X_{n} arrive in a Poisson process of rate λ, and have CF, mean and variance as above, the claim total at time t has CF, mean and variance

$$
\psi(u)=\exp \{-\lambda t(1-\phi(u))\}, \quad \lambda t \mu, \quad \lambda t E\left[X^{2}\right]=\lambda t\left(\mu^{2}+\sigma^{2}\right)
$$

