M3F22/M4F22/M5F22 EXAMINATION SOLUTIONS 2017-18

Q1 (Lack of memory and the exponential laws).
(a) Consider a probability distribution (law) F on $(0, \infty)$, interpreted as the lifetime law of components, say. Then F has the lack-of-memory property iff the components show no aging - that is, if a component still in use behaves as if new. The condition for this is (with X the age of the current component)

$$
\begin{gathered}
P(X>s+t \mid X>s)=P(X>t) \quad(s, t>0): \\
P(X>s+t)=P(X>s) P(X>t)
\end{gathered}
$$

Writing $\bar{F}(x):=1-F(x)(x \geq 0)$ for the tail of F, this says that

$$
\begin{equation*}
\bar{F}(s+t)=\bar{F}(s) \bar{F}(t) \quad(s, t \geq 0) \tag{5}
\end{equation*}
$$

(b) Obvious solutions are

$$
\bar{F}(t)=e^{-\lambda t}, \quad F(t)=1-e^{-\lambda t}
$$

for some $\lambda>0$ - the exponential law $E(\lambda)$. Now

$$
\begin{equation*}
f(s+t)=f(s) f(t) \quad(s, t \geq 0) \tag{CFE}
\end{equation*}
$$

is a 'functional equation' - the Cauchy functional equation (CFE) - and (we quote) these are the only bounded solutions, (indeed, the only ones subject to any - minimal - regularity condition).

So the exponential laws $E(\lambda)$ are characterized by the lack-of-memory property.
(c) The Poisson point process $\operatorname{Ppp}(\lambda)$ with rate $\lambda>0$ is defined to have the inter-arrival times independent $E(\lambda)$. It is the lack-of-memory property of the $E(\lambda)$ that makes the Poisson process the basic model for events occurring 'out of the blue'. Typical examples are accidents, insurance claims, hospital admissions, earthquakes, volcanic eruptions etc.
(d) Limitations. The weakness in this model for insurance claims is that a major catastrophe produces a cluster of claims. The independence assumption will fail badly within clusters, though it may still work well between clusters.
[(a)-(c): seen - lectures; (d): mainly unseen]

Q2 (No-Arbitrage Theorem (NA Theorem)).
(a) Proof: \Leftarrow. In discrete time: we take the state space Ω to be discrete also; we can then retain only sample points ω with positive probability, $P(\omega)>0$.

Assume such an equivalent martingale measure (EMM) P^{*} exists. For any self-financing strategy H, we have

$$
\tilde{V}_{n}(H)=V_{0}(H)+\Sigma_{1}^{n} H_{j} . \Delta \tilde{S}_{j}
$$

(at the j th trade, the gain in value $\Delta V_{j}(H)$ is the amount H_{j} of the j th asset that we buy, times the gain ΔS_{j} in its price; similarly for $\tilde{V}_{j}, \tilde{S}_{j}$ with discounting). This gives $\tilde{V}_{n}(H)$ as the martingale transform of the P^{*}-martingale \tilde{S}_{j} by $H=\left(H_{n}\right)$, so $\tilde{V}_{n}(H)$ is a P^{*}-martingale. So the initial and final P^{*} expectations are the same: using E^{*} for P^{*}-expectation,

$$
E^{*}\left[\tilde{V}_{N}(H)\right]=E^{*}\left[\tilde{V}_{0}(H)\right]
$$

If the strategy is admissible and its initial value - the RHS above - is zero, the LHS $E^{*}\left[\tilde{V}_{N}(H)\right]$ is zero, but $\tilde{V}_{N}(H) \geq 0$ (by admissibility). Since each $P(\{\omega\})>0$ (by assumption), each $P^{*}(\{\omega\})>0$ (by equivalence). This and $\tilde{V}_{N}(H) \geq 0$ force $\tilde{V}_{N}(H)=0$ (sum of non-negatives can only be 0 if each term is 0). So no arbitrage is possible. //
(b) The direct half (no arbitrage implies existence of an EMM) needs the Separating Hyperplane Theorem. The general form of this is related to the Hahn-Banach Theorem of Functional Analysis, which needs the Axiom of Choice (AC). In a finite-dimensional setting (as in (i)), one can use Euclidean geometry - much simpler.
(c) The NA Theorem (NA iff EMMs exist) shows that the assumption of NA is needed to be able to price assets, including options. (Completeness is needed to make EMMs, and so prices, unique; real markets are incomplete; real prices are non-unique; "You'd better shop around".) In particular, one can price options without needing to know the market participant's utility function - i.e., his attitude to risk. This is the Arbitrage Pricing Technique (APT), due to the late Steve (S. A.) Ross (1976/78): it takes the qualitative insight of the NA Theorem above, and uses it systematically to produce quantitative results - asset pricing, etc. (EMMs correspond to pricing kernels).
(d) Arbitrage opportunities do exist in reality - and professional arbitrageurs hunt for them. They are a 'second-order effect': anyone opening himself to arbitrage is in effect offering the market free money (being used as a 'moneypump'); the market will take the free money without limit until he withdraws from the market (bankrupt or otherwise), or at least withdraws the arbitrage opportunity - which is thus 'arbitraged away'.
(e) With EMMs, we can price assets (albeit non-uniquely without completeness - to within an interval, the 'bid-ask spread'). But without NA and EMMs, pricing cannot be done systematically at all. If assets cannot be priced reliably, they will not be traded, in any significant quantity. So option exchanges (such as CBOE), where options can be traded in quantity and so as liquid assets, could not have been developed. So the existence of a mass market in options and other assets (an essential aspect of the City of London and other global financial centres) depends on the no-arbitrage assumption.

With 'money-pumps' as in (d) available on a large scale, one would have a disorderly market (the economy would be like a bath with taps running but no plug).
[(a)-(d): seen; (e): unseen]

Q3 (Theta). Given

$$
\begin{equation*}
K e^{-r(T-t)} \phi\left(d_{2}\right)=S \phi\left(d_{1}\right): \tag{*}
\end{equation*}
$$

(a) Calls. Given the Black-Scholes formula for the price c_{t} of European calls,

$$
\begin{gathered}
c_{t}=S_{t} \Phi\left(d_{1}\right)-K e^{-r(T-t)} \Phi\left(d_{2}\right) \\
d_{1,2}:=\left[\log (S / K)+\left(r \pm \frac{1}{2} \sigma^{2}\right)(T-t)\right] / \sigma \sqrt{T-t}: \quad d_{2}=d_{1}-\sigma \sqrt{T-t}:
\end{gathered}
$$

(i) Differentiating and using ($*$): as

$$
\begin{gathered}
\partial\left(d_{1}-d_{2}\right) / \partial t=\partial(\sigma \sqrt{T-t}) / \partial t=-\frac{1}{2} \sigma / \sqrt{T-t}: \\
\Theta=\partial c_{t} / \partial t=S \phi\left(d_{1}\right) \frac{\partial d_{1}}{\partial t}-r K e^{-r(T-t)} \Phi\left(d_{2}\right)-K e^{-r(T-t)} \phi\left(d_{2}\right) \frac{\partial d_{2}}{\partial t}: \\
\Theta=K e^{-r(T-t)}\left[\phi\left(d_{2}\right) \frac{\partial\left(d_{1}-d_{2}\right)}{\partial t}-r \Phi\left(d_{2}\right)\right]: \\
\Theta=-K e^{-r(T-t)}\left[\phi\left(d_{2}\right) \cdot \frac{\frac{1}{2} \sigma}{\sqrt{T-t}}+r \Phi\left(d_{2}\right)\right]<0 .
\end{gathered}
$$

(ii) Interpretation: an option is (partly) an insurance against future uncertainty. As time passes, there is less future (till expiry) to protect against, so such protection becomes less valuable.
(b) Puts. Given the corresponding BS formula for European puts,

$$
p_{t}=K e^{-r(T-t)} \Phi\left(-d_{2}\right)-S_{t} \Phi\left(-d_{1}\right),
$$

(i) As above, as $\phi(-x)=\phi(x)$,
$\Theta=\partial p_{t} / \partial t=r K e^{-r(T-t)} \Phi\left(-d_{2}\right)+K e^{-r(T-t)} \phi\left(d_{2}\right) \frac{\partial\left(-d_{2}\right)}{\partial t}-S \phi\left(d_{1}\right) \frac{\partial\left(-d_{1}\right)}{\partial t}:$
$\Theta=K e^{-r(T-t)}\left[r \Phi\left(-d_{2}\right)+\phi\left(d_{2}\right) \frac{\partial\left(d_{1}-d_{2}\right)}{\partial t}\right]=K e^{-r(T-t)}\left[r \Phi\left(-d_{2}\right)-\phi\left(d_{2}\right) \cdot \frac{\frac{1}{2} \sigma}{\sqrt{T-t}}\right]$.
This can change sign!
Or: use put-call parity: $S+P-C=K e^{-r(T-t)}=K e^{-r T} e^{r t}$. So
$\Theta_{P}=\Theta_{C}+r K e^{-r T} e^{r t}$. The first term is <0 by (a), the second is >0, so the sum can change sign.
(ii) The situation with puts is different, because of the different role of the
strike K (fixed, while S varies).
For large enough K (when a put option - the right to sell at price $K-$ will be deeply in the money), the option stands to make a large profit. So the more time passes, the nearer this is to being realised, the better, so $\Theta>0$.

This is the situation when $K \gg S, S / K$ small (positive), $\log (S / K)$, d_{1}, d_{2} small (near $\left.-\infty\right), \Phi\left(-d_{2}\right)$ near 1 , but $\phi\left(-d_{2}\right)$ exponentially small, so negligible. So the second (negative) term is negligible, and the first (positive) term predominates.
Note. We have used S_{t} for the stock price at time t in the Black-Scholes formulae, but abbreviated this to S in our working. There is no need for a " $\partial S / \partial t$ " term in the calculus! Indeed, there can't be one (the SDE for GBM in Q5 involves Brownian motion, and this is not differentiable). There is a functional dependence on time t in the discounting multiplying K, and in d_{1}, d_{2}. There is no functional dependence of S on t (although of course the stock price varies with time). In mathematical terms, what S depends on is the randomness, ω (suppressed as usual in our notation), as S is a stochastic process (random function of time). In financial terms, what S depends on is the market.
[(ai), (bi): similar seen (for vega, the derivative wrt the volatility σ, and ρ, the derivative wrt the riskless interest-rate r); (aii), (bii): unseen]

Q4 (Renewal theory and ruin theory).
(a) Safety loading. With $c>0$ the premium rate at which cash comes in, $\lambda>0$ the rate at which claims occur, $\mu \in(0, \infty)$ the mean claim size, cash goes out at rate $\lambda \mu$, so one needs ('more in than out') $c>\lambda \mu$. The safety loading $\rho>0$ is defined by

$$
\begin{equation*}
\frac{c}{\lambda \mu}=1+\rho \tag{SL}
\end{equation*}
$$

(b) Key renewal theorem. The renewal equation for F and z (both known) is the integral equation

$$
\begin{equation*}
Z(t)=z(t)+\int_{0}^{t} Z(t-u) d F(u) \quad(t \geq 0): \quad Z=z+F * Z \tag{RE}
\end{equation*}
$$

Here F (the lifetime distribution) and z are given, and $(R E)$ is to be solved for Z. Then for $U:=\sum_{0}^{\infty} F^{* n}$ the renewal function of F :

Theorem (Key Renewal Theorem; W. L. Smith). If z in $(R E)$ is directly Riemann integrable, then with U the renewal function of F,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} Z(t)=\lim _{t \rightarrow \infty}(U * z)(t)=\frac{1}{\mu} \int_{0}^{\infty} z(x) d x \tag{3}
\end{equation*}
$$

(c) The Lundberg (or adjustment) coefficient, r. This is the point $r>0$ (assumed to exist - a strengthening of the Small Claims Condition; it is then unique) such that the MGF of $Z=Z_{1}$ satisfies, writing M for $M_{X_{1}}$ for short,

$$
M_{Z_{1}}(r):=E\left[\exp \left\{r\left(X_{1}-c W_{1}\right)\right\}\right]=M(r) \cdot \frac{\lambda}{\lambda+c r}=1: \quad M(r)=1+\frac{c r}{\lambda}
$$

(the product by independence, the second factor as $W_{1} \sim E(\lambda)$).
The bigger r is, the better. For (from the graph of M): the bigger r is, the bigger the strip of holomorphy of the claim-size MGF, so the smaller the claim-size tails, so the smaller the chance of a damaging big claim.
(d) The Esscher transform. By above,

$$
M(r):=\int_{0}^{\infty} e^{r x} d F(x)=-\int_{0}^{\infty} e^{r x} d(1-F)(x)=1+\frac{c r}{\lambda} .
$$

Integrating by parts, the integrated term is 1 , giving

$$
\int_{0}^{\infty}(1-F(x)) e^{r x} d x=\frac{c}{\lambda},=(1+\rho) \mu
$$

by $(S L)$. So

$$
\frac{\lambda}{c}(1-F(x)) e^{r x}=\frac{1}{(1+\rho) \mu}(1-F(x)) e^{r x}
$$

is a probability density on $(0, \infty)$ - of G, say. Then $F \mapsto G$ is called the Esscher transform.
(e) The Cramér estimate of ruin. Given the integral equation for the ruin probability $\psi(u)$:

$$
\psi(u)=\frac{1}{(1+\rho)} \int_{u}^{\infty} \frac{(1-F(x))}{\mu} d x+\frac{1}{(1+\rho)} \cdot \int_{0}^{u} \psi(u-x) \frac{(1-F(x))}{\mu} d x(*)
$$

(as $(1-F(x)) / \mu$ is a probability density, so integrates to 1). This is of renewal-equation type, except that, as $(1-F(x)) / \mu$ is a probability density, the factor $1 /(1+\rho)<1$ turns it into a sub-probability (or defective) density.

Theorem (Cramér's estimate of ruin, 1930).

For the Cramér-Lundberg model, with Lundberg coefficient $r>0$ and $\psi(u)$ the probability of ruin with initial capital u,

$$
e^{r u} \psi(u) \rightarrow C: \quad \psi(u) \sim C e^{-r u} \quad(u \rightarrow \infty)
$$

with C an (identifiable) constant. That is, as the initial capital increases, the ruin probability decreases exponentially.

Proof. Multiply (*) by $e^{r u}$, and regard it as an integral equation in $\psi(u) e^{r u}$:

$$
\left[\psi(u) e^{r u}\right]=e^{r u} \int_{u}^{\infty} \frac{(1-F(x))}{(1+\rho) \mu} d x+\int_{0}^{u}\left[\psi(u-x) e^{r(u-x)}\right] \frac{e^{r x}(1-F(x))}{(1+\rho) \mu} d x
$$

This is now an integral equation of renewal type $(R E)$. So by the Key Renewal Theorem, its solution $\psi(u) e^{r u}$ has a limit, C say, as $u \rightarrow \infty(C$ can be read off from the Key Renewal Theorem). //
(f) The most unrealistic assumption here is that the claims are independent. A natural disaster will produce a cluster of claims, heavily dependent. This can be handled by treating the clusters as 'points' in a Poisson process. [3] [(a) - (e): Seen - lectures; (f): unseen]

Q5 (Mastery question: Geometric Brownian motion and its quadratic variation).
(a) Consider the process
$X_{t}=f\left(t, B_{t}\right):=x_{0} . \exp \left\{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}\right\}: \log X_{t}=$ const $+\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}$,
with $B=\left(B_{t}\right)$ Brownian motion (BM). Here, since

$$
\begin{gathered}
f(t, x)=x_{0} \cdot \exp \left\{\left(\mu-\frac{1}{2} s^{2}\right) t+\sigma x\right\} \\
f_{1}=\left(\mu-\frac{1}{2} \sigma^{2}\right) f, \quad f_{2}=\sigma f, \quad f_{22}=\sigma^{2} f
\end{gathered}
$$

By Itô's Lemma,

$$
\begin{gathered}
d X_{t}=f_{1} d x+f_{2} d B_{t}+\frac{1}{2} f_{22}\left(d B_{t}\right)^{2}: \\
d X_{t}=d f=\left[\left(\mu-\frac{1}{2} \sigma^{2}\right) f+\frac{1}{2} \sigma^{2} f\right] d t+\sigma f d B_{t}: \\
d X_{t}=\mu f d t+\sigma f d B_{t}=\mu X_{t} d t+\sigma X_{t} d B_{t}:
\end{gathered}
$$

X satisfies the SDE

$$
\begin{equation*}
d X_{t}=X_{t}\left(\mu d t+\sigma d B_{t}\right): \quad d X_{t} / X_{t}=\mu d t+\sigma d B_{t} \tag{GBM}
\end{equation*}
$$

geometric Brownian motion (GBM). It is used to model (stock) price processes in the Black-Scholes model - where, by (*), log-prices $\log X_{t}$ are normally distributed, so prices are log-normally distributed.
(b) Interpretation. The $\mu d t$ term on the RHS corresponds to a riskless asset with return rate μ. The $\sigma d B_{t}$ term corresponds to a risky asset with volatility σ; the Brownian motion $\left(B_{t}\right)$ models the uncertainty driving the economic/financial environment; the volatility σ represents how sensitive this particular stock is to this.
(c) Quadratic variation. Recall $\left(d B_{t}\right)^{2}=d t$ (Itô: differential form of Lévy's theorem on quadratic variation of BM). So

$$
\left(d X_{t}\right)^{2}=X_{t}^{2}\left(\mu^{2}(d t)^{2}+2 \mu \sigma d t d B_{t}+\sigma^{2}\left(d B_{t}\right)^{2}\right): \quad\left(d X_{t}\right)^{2}=\sigma^{2} X_{t}^{2} d t
$$

as above. So, as with BM, GBM has quadratic variation (QV)

$$
\begin{equation*}
\sigma^{2} \int_{0}^{t} X_{s}^{2} d s \tag{3}
\end{equation*}
$$

(d) Expected QV. By Fubini's theorem, it has expected QV

$$
E\left[\sigma^{2} \int_{0}^{t} X_{s}^{2} d s\right]=\sigma^{2} \int_{0}^{t} E\left[X_{s}^{2}\right] d s
$$

By $(*)$, as $B_{t} \sim \sqrt{t} Z$ with $Z \sim N(0,1)$ with MGF $\exp \left\{\frac{1}{2} t^{2}\right\}$,
$X_{t}^{2}=x_{0}^{2} \cdot \exp \left\{\left(2 \mu-\sigma^{2}\right) t\right\} \cdot \exp \left\{2 \sigma B_{t}\right\} \sim x_{0}^{2} \cdot \exp \left\{\left(2 \mu-\sigma^{2}\right) t\right\} \cdot \exp \{2 \sigma \sqrt{t} Z\}$.
By the normal MGF, the last term has expectation $\exp \left\{\frac{1}{2}(2 \sigma \sqrt{t})^{2}\right\}=\exp \left\{2 \sigma^{2} t\right\}$. Combining,

$$
E\left[X_{t}^{2}\right]=x_{0}^{2} \cdot \exp \left\{\left(2 \mu-\sigma^{2}\right) t\right\} \cdot \exp \left\{2 \sigma^{2} t\right\}=x_{0}^{2} \cdot \exp \left\{\left(2 \mu+\sigma^{2}\right) t\right\}
$$

So the expected QV of GBM is

$$
\begin{equation*}
x_{0}^{2} \sigma^{2} \frac{\exp \left\{\left(2 \mu+\sigma^{2}\right) t\right\}-1}{2 \mu+\sigma^{2}} . \tag{6}
\end{equation*}
$$

[(a), (b): seen, lectures; (c), (d): unseen]
N. H. Bingham

