
M3F22/M4F22/M5F22 EXAMINATION SOLUTIONS 2017-18

Q1 (Lack of memory and the exponential laws).
(a) Consider a probability distribution (law) F on (0,∞), interpreted as the
lifetime law of components, say. Then F has the lack-of-memory property iff
the components show no aging – that is, if a component still in use behaves as
if new. The condition for this is (with X the age of the current component)

P (X > s+ t|X > s) = P (X > t) (s, t > 0) :

P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0). [5]

(b) Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt

for some λ > 0 – the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0) (CFE)

is a ‘functional equation’ – the Cauchy functional equation (CFE) – and (we
quote) these are the only bounded solutions, (indeed, the only ones subject
to any – minimal – regularity condition).

So the exponential laws E(λ) are characterized by the lack-of-memory
property. [5]
(c) The Poisson point process Ppp(λ) with rate λ > 0 is defined to have the
inter-arrival times independent E(λ). It is the lack-of-memory property of
the E(λ) that makes the Poisson process the basic model for events occurring
‘out of the blue’. Typical examples are accidents, insurance claims, hospital
admissions, earthquakes, volcanic eruptions etc. [5]
(d) Limitations. The weakness in this model for insurance claims is that a
major catastrophe produces a cluster of claims. The independence assump-
tion will fail badly within clusters, though it may still work well between
clusters. [5]
[(a)-(c): seen – lectures; (d): mainly unseen]
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Q2 (No-Arbitrage Theorem (NA Theorem)).
(a) Proof: ⇐. In discrete time: we take the state space Ω to be discrete also;
we can then retain only sample points ω with positive probability, P (ω) > 0.

Assume such an equivalent martingale measure (EMM) P ∗ exists. For
any self-financing strategy H, we have

Ṽn(H) = V0(H) + Σn
1Hj.∆S̃j

(at the jth trade, the gain in value ∆Vj(H) is the amount Hj of the jth asset
that we buy, times the gain ∆Sj in its price; similarly for Ṽj, S̃j with discount-
ing). This gives Ṽn(H) as the martingale transform of the P ∗-martingale S̃j
by H = (Hn), so Ṽn(H) is a P ∗-martingale. So the initial and final P ∗-
expectations are the same: using E∗ for P ∗-expectation,

E∗[ṼN(H)] = E∗[Ṽ0(H)].

If the strategy is admissible and its initial value – the RHS above – is zero,
the LHS E∗[ṼN(H)] is zero, but ṼN(H) ≥ 0 (by admissibility). Since each
P ({ω}) > 0 (by assumption), each P ∗({ω}) > 0 (by equivalence). This and
ṼN(H) ≥ 0 force ṼN(H) = 0 (sum of non-negatives can only be 0 if each
term is 0). So no arbitrage is possible. // [6]

(b) The direct half (no arbitrage implies existence of an EMM) needs the
Separating Hyperplane Theorem. The general form of this is related to the
Hahn-Banach Theorem of Functional Analysis, which needs the Axiom of
Choice (AC). In a finite-dimensional setting (as in (i)), one can use Eu-
clidean geometry – much simpler. [3]

(c) The NA Theorem (NA iff EMMs exist) shows that the assumption of
NA is needed to be able to price assets, including options. (Completeness is
needed to make EMMs, and so prices, unique; real markets are incomplete;
real prices are non-unique; “You’d better shop around”.) In particular, one
can price options without needing to know the market participant’s utility
function – i.e., his attitude to risk. This is the Arbitrage Pricing Technique
(APT), due to the late Steve (S. A.) Ross (1976/78): it takes the qualita-
tive insight of the NA Theorem above, and uses it systematically to produce
quantitative results – asset pricing, etc. (EMMs correspond to pricing ker-
nels). [3]
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(d) Arbitrage opportunities do exist in reality – and professional arbitrageurs
hunt for them. They are a ‘second-order effect’: anyone opening himself to
arbitrage is in effect offering the market free money (being used as a ‘money-
pump’); the market will take the free money without limit until he withdraws
from the market (bankrupt or otherwise), or at least withdraws the arbitrage
opportunity – which is thus ‘arbitraged away’. [4]

(e) With EMMs, we can price assets (albeit non-uniquely without complete-
ness – to within an interval, the ‘bid-ask spread’). But without NA and
EMMs, pricing cannot be done systematically at all. If assets cannot be
priced reliably, they will not be traded, in any significant quantity. So option
exchanges (such as CBOE), where options can be traded in quantity and so
as liquid assets, could not have been developed. So the existence of a mass
market in options and other assets (an essential aspect of the City of London
and other global financial centres) depends on the no-arbitrage assumption.

With ‘money-pumps’ as in (d) available on a large scale, one would have
a disorderly market (the economy would be like a bath with taps running but
no plug). [4]
[(a)-(d): seen; (e): unseen]
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Q3 (Theta). Given
Ke−r(T−t)φ(d2) = Sφ(d1) : (∗)

(a) Calls. Given the Black-Scholes formula for the price ct of European calls,

ct = StΦ(d1)−Ke−r(T−t)Φ(d2),

d1,2 := [log(S/K) + (r ± 1

2
σ2)(T − t)]/σ

√
T − t : d2 = d1 − σ

√
T − t :

(i) Differentiating and using (∗): as

∂(d1 − d2)/∂t = ∂(σ
√
T − t)/∂t = −1

2
σ/
√
T − t :

Θ = ∂ct/∂t = Sφ(d1)
∂d1
∂t
− rKe−r(T−t)Φ(d2)−Ke−r(T−t)φ(d2)

∂d2
∂t

:

Θ = Ke−r(T−t)[φ(d2)
∂(d1 − d2)

∂t
− rΦ(d2)] :

Θ = −Ke−r(T−t)[φ(d2) ·
1
2
σ

√
T − t

+ rΦ(d2)] < 0. [6]

(ii) Interpretation: an option is (partly) an insurance against future uncer-
tainty. As time passes, there is less future (till expiry) to protect against, so
such protection becomes less valuable. [4]
(b) Puts. Given the corresponding BS formula for European puts,

pt = Ke−r(T−t)Φ(−d2)− StΦ(−d1),

(i) As above, as φ(−x) = φ(x),

Θ = ∂pt/∂t = rKe−r(T−t)Φ(−d2) +Ke−r(T−t)φ(d2)
∂(−d2)
∂t

−Sφ(d1)
∂(−d1)
∂t

:

Θ = Ke−r(T−t)[rΦ(−d2)+φ(d2)
∂(d1 − d2)

∂t
] = Ke−r(T−t)[rΦ(−d2)−φ(d2)·

1
2
σ

√
T − t

].

This can change sign! [6]
Or: use put-call parity: S + P − C = Ke−r(T−t) = Ke−rT ert. So

ΘP = ΘC + rKe−rT ert. The first term is < 0 by (a), the second is > 0, so
the sum can change sign.
(ii) The situation with puts is different, because of the different role of the
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strike K (fixed, while S varies).
For large enough K (when a put option – the right to sell at price K –

will be deeply in the money), the option stands to make a large profit. So the
more time passes, the nearer this is to being realised, the better, so Θ > 0.

This is the situation when K >> S, S/K small (positive), log(S/K),
d1, d2 small (near −∞), Φ(−d2) near 1, but φ(−d2) exponentially small, so
negligible. So the second (negative) term is negligible, and the first (positive)
term predominates. [4]
Note. We have used St for the stock price at time t in the Black-Scholes
formulae, but abbreviated this to S in our working. There is no need for a
“∂S/∂t” term in the calculus! Indeed, there can’t be one (the SDE for GBM
in Q5 involves Brownian motion, and this is not differentiable). There is a
functional dependence on time t in the discounting multiplying K, and in
d1, d2. There is no functional dependence of S on t (although of course the
stock price varies with time). In mathematical terms, what S depends on is
the randomness, ω (suppressed as usual in our notation), as S is a stochastic
process (random function of time). In financial terms, what S depends on is
the market.
[(ai), (bi): similar seen (for vega, the derivative wrt the volatility σ, and ρ,
the derivative wrt the riskless interest-rate r); (aii), (bii): unseen]
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Q4 (Renewal theory and ruin theory).
(a) Safety loading. With c > 0 the premium rate at which cash comes
in, λ > 0 the rate at which claims occur, µ ∈ (0,∞) the mean claim size,
cash goes out at rate λµ, so one needs (‘more in than out’) c > λµ. The
safety loading ρ > 0 is defined by

c

λµ
= 1 + ρ. (SL) [3]

(b) Key renewal theorem. The renewal equation for F and z (both known) is
the integral equation

Z(t) = z(t) +

∫ t

0

Z(t− u)dF (u) (t ≥ 0) : Z = z + F ∗ Z. (RE)

Here F (the lifetime distribution) and z are given, and (RE) is to be solved
for Z. Then for U :=

∑∞
0 F ∗n the renewal function of F :

Theorem (Key Renewal Theorem; W. L. Smith). If z in (RE) is
directly Riemann integrable, then with U the renewal function of F ,

limt→∞Z(t) = limt→∞(U ∗ z)(t) =
1

µ

∫ ∞
0

z(x)dx. [3]

(c) The Lundberg (or adjustment) coefficient, r. This is the point r > 0
(assumed to exist – a strengthening of the Small Claims Condition; it is then
unique) such that the MGF of Z = Z1 satisfies, writing M for MX1 for short,

MZ1(r) := E[exp{r(X1 − cW1)}] = M(r).
λ

λ+ cr
= 1 : M(r) = 1 +

cr

λ

(the product by independence, the second factor as W1 ∼ E(λ)).
The bigger r is, the better. For (from the graph of M): the bigger r is,

the bigger the strip of holomorphy of the claim-size MGF, so the smaller the
claim-size tails, so the smaller the chance of a damaging big claim. [4]
(d) The Esscher transform. By above,

M(r) :=

∫ ∞
0

erxdF (x) = −
∫ ∞
0

erxd(1− F )(x) = 1 +
cr

λ
.

Integrating by parts, the integrated term is 1, giving∫ ∞
0

(1− F (x))erxdx =
c

λ
,= (1 + ρ)µ,
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by (SL). So
λ

c
(1− F (x))erx =

1

(1 + ρ)µ
(1− F (x))erx

is a probability density on (0,∞) – of G, say. Then F 7→ G is called the
Esscher transform. [3]
(e) The Cramér estimate of ruin. Given the integral equation for the ruin
probability ψ(u):

ψ(u) =
1

(1 + ρ)

∫ ∞
u

(1− F (x))

µ
dx+

1

(1 + ρ)
·
∫ u

0

ψ(u−x)
(1− F (x))

µ
dx (∗)

(as (1 − F (x))/µ is a probability density, so integrates to 1). This is of
renewal-equation type, except that, as (1− F (x))/µ is a probability density,
the factor 1/(1 + ρ) < 1 turns it into a sub-probability (or defective) density.

Theorem (Cramér’s estimate of ruin, 1930).
For the Cramér-Lundberg model, with Lundberg coefficient r > 0 and

ψ(u) the probability of ruin with initial capital u,

eruψ(u)→ C : ψ(u) ∼ Ce−ru (u→∞),

with C an (identifiable) constant. That is, as the initial capital increases,
the ruin probability decreases exponentially.

Proof. Multiply (∗) by eru, and regard it as an integral equation in ψ(u)eru:

[ψ(u)eru] = eru
∫ ∞
u

(1− F (x))

(1 + ρ)µ
dx+

∫ u

0

[ψ(u− x)er(u−x)]
erx(1− F (x))

(1 + ρ)µ
dx.

This is now an integral equation of renewal type (RE). So by the Key Re-
newal Theorem, its solution ψ(u)eru has a limit, C say, as u→∞ (C can be
read off from the Key Renewal Theorem). // [4]

(f) The most unrealistic assumption here is that the claims are independent.
A natural disaster will produce a cluster of claims, heavily dependent. This
can be handled by treating the clusters as ‘points’ in a Poisson process. [3]
[(a) - (e): Seen – lectures; (f): unseen]
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Q5 (Mastery question: Geometric Brownian motion and its quadratic varia-
tion).
(a) Consider the process

Xt = f(t, Bt) := x0. exp{(µ−1

2
σ2)t+σBt} : logXt = const+(µ−1

2
σ2)t+σBt,

(∗)
with B = (Bt) Brownian motion (BM). Here, since

f(t, x) = x0. exp{(µ− 1

2
s2)t+ σx},

f1 = (µ− 1

2
σ2)f, f2 = σf, f22 = σ2f.

By Itô’s Lemma,

dXt = f1dx+ f2dBt +
1

2
f22(dBt)

2 :

dXt = df = [(µ− 1

2
σ2)f +

1

2
σ2f ]dt+ σfdBt :

dXt = µfdt+ σfdBt = µXtdt+ σXtdBt :

X satisfies the SDE

dXt = Xt(µdt+ σdBt) : dXt/Xt = µdt+ σdBt, (GBM)

geometric Brownian motion (GBM). It is used to model (stock) price pro-
cesses in the Black-Scholes model – where, by (∗), log-prices logXt are nor-
mally distributed, so prices are log-normally distributed. [8]
(b) Interpretation. The µdt term on the RHS corresponds to a riskless as-
set with return rate µ. The σdBt term corresponds to a risky asset with
volatility σ; the Brownian motion (Bt) models the uncertainty driving the
economic/financial environment; the volatility σ represents how sensitive this
particular stock is to this. [3]
(c) Quadratic variation. Recall (dBt)

2 = dt (Itô: differential form of Lévy’s
theorem on quadratic variation of BM). So

(dXt)
2 = X2

t (µ2(dt)2 + 2µσdtdBt + σ2(dBt)
2) : (dXt)

2 = σ2X2
t dt,

as above. So, as with BM, GBM has quadratic variation (QV)

σ2

∫ t

0

X2
sds. [3]
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(d) Expected QV. By Fubini’s theorem, it has expected QV

E[σ2

∫ t

0

X2
sds] = σ2

∫ t

0

E[X2
s ]ds,

By (∗), as Bt ∼
√
tZ with Z ∼ N(0, 1) with MGF exp{1

2
t2},

X2
t = x20 · exp{(2µ− σ2)t} · exp{2σBt} ∼ x20 · exp{(2µ− σ2)t} · exp{2σ

√
tZ}.

By the normal MGF, the last term has expectation exp{1
2
(2σ
√
t)2} = exp{2σ2t}.

Combining,

E[X2
t ] = x20 · exp{(2µ− σ2)t} · exp{2σ2t} = x20 · exp{(2µ+ σ2)t}.

So the expected QV of GBM is

x20σ
2 exp{(2µ+ σ2)t} − 1

2µ+ σ2
. [6]

[(a), (b): seen, lectures; (c), (d): unseen] N. H. Bingham
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