m3f33chIII

Chapter III: MEASURE-THEORETIC PROBABILITY

1. Measure

The language of option pricing involves that of probability, which in turn involves that of *measure theory*. This originated with Henri LEBESGUE (1875-1941), in his 1902 thesis, 'Intégrale, longueur, aire'. We begin with the simplest case.

Length.

The length $\mu(I)$ of an interval I = (a, b), [a, b], [a, b) or (a, b] should be b - a: $\mu(I) = b - a$. The length of the disjoint union $I = \bigcup_{r=1}^{n} I_r$ of intervals I_r should be the sum of their lengths:

$$\mu\left(\bigcup_{r=1}^{n} I_r\right) = \sum_{r=1}^{n} \mu(I_r) \qquad \text{(finite additivity)}.$$

Consider now an infinite sequence I_1, I_2, \ldots (*ad infinitum*) of disjoint intervals. Letting $n \to \infty$ suggests that length should again be additive over disjoint intervals:

$$\mu\left(\bigcup_{r=1}^{\infty} I_r\right) = \sum_{r=1}^{\infty} \mu(I_r) \qquad \text{(countable additivity)}.$$

For I an interval, A a subset of length $\mu(A)$, the length of the complement $I \setminus A := I \cap A^c$ of A in I should be

$$\mu(I \setminus A) = \mu(I) - \mu(A) \qquad \text{(complementation)}.$$

If $A \subseteq B$ and B has length $\mu(B) = 0$, then A should have length 0 also:

$$A \subseteq B \& \mu(B) = 0 \Rightarrow \mu(A) = 0$$
 (completeness).

Let \mathcal{F} be the smallest class of sets $A \subset \mathbb{R}$ containing the intervals, closed under countable disjoint unions and complements, and complete (containing all subsets of sets of length 0 as sets of length 0). The above suggests – what Lebesgue showed – that length can be sensibly defined on the sets \mathcal{F} on the line, but on no others. There are others – but they are hard to construct (in technical language: the Axiom of Choice (AC), or some variant of it such as Zorn's Lemma, is needed to demonstrate the existence of non-measurable sets – but all such proofs are highly non-constructive). So: some but not all subsets of the line have a length.¹ These are called the *Lebesgue-measurable* sets, and form the class \mathcal{F} described above; length, defined on \mathcal{F} is called *Lebesgue measure* μ (on the real line, \mathbb{R}).

Area.

The area of a rectangle $R = (a_1, b_1) \times (a_2, b_2)$ – with or without any of its perimeter included – should be $\mu(R) = (b_1 - a_1) \times (b_2 - a_2)$. The area of a finite or countably infinite union of disjoint rectangles should be the sum of their areas:

$$\mu\left(\bigcup_{n=1}^{\infty} R_n\right) = \sum_{n=1}^{\infty} \mu(R_n) \qquad \text{(countable additivity)}.$$

If R is a rectangle and $A \subseteq R$ with area $\mu(A)$, the area of the complement $R \setminus A$ should be

$$\mu(R \setminus A) = \mu(R) - \mu(A) \qquad \text{(complementation)}.$$

If $B \subseteq A$ and A has area 0, B should have area 0:

$$A \subseteq B \& \mu(B) = 0 \Rightarrow \mu(A) = 0$$
 (completeness).

Let \mathcal{F} be the smallest class of sets, containing the rectangles, closed under finite or countably infinite unions, closed under complements, and complete (containing all subsets of sets of area 0 as sets of area 0). Lebesgue showed that area can be sensibly defined on the sets in \mathcal{F} and no others. The sets $A \in \mathcal{F}$ are called the *Lebesgue-measurable sets* in the plane \mathbb{R}^2 ; area, defined on \mathcal{F} , is called *Lebesgue measure* in the plane. So: some but not all sets in the plane have an area.

Volume.

Similarly in three-dimensional space \mathbb{R}^3 , starting with the volume of a cuboid $C = (a_1, b_1) \times (a_2, b_2) \times (a_3, b_3)$ as

$$\mu(C) = (b_1 - a_1) \cdot (b_2 - a_2) \cdot (b_3 - a_3).$$

¹There are alternatives to AC, under which *all sets are measurable*. So it is not so much a question of whether AC is *true* or not, but of what axioms of Set Theory we assume. Background: Model Theory in Mathematical Logic, etc.

Euclidean space.

Similarly in k-dimensional Euclidean space \mathbb{R}^k . We start with

$$\mu\left(\prod_{i=1}^{k} (a_i, b_i)\right) = \prod_{i=1}^{k} (b_i - a_i)$$

and obtain the class \mathcal{F} of *Lebesgue-measurable* sets in \mathbb{R}^k , and *Lebesgue measure* μ in \mathbb{R}^k .

Probability.

The unit cube $[0,1]^k$ in \mathbb{R}^k has Lebesgue measure 1. It can be used to model the *uniform distribution* (density f(x) = 1 if $x \in [0,1]^k$, 0 otherwise), with probability = length/area/volume if k = 1/2/3.

Note. If a property holds everywhere except on a set of measure zero, we say it holds *almost everywhere* (a.e.) [French: *presque partout*, p.p.; German: *fast überall*, f.u.]. If it holds everywhere except on a set of probability zero, we say it holds *almost surely* (a.s.) [or, with probability one].

2. Integral.

1. Indicators.

We start in dimension k = 1 for simplicity, and consider the simplest calculus formula $\int_a^b 1 \, dx = b - a$. We rewrite this as

$$I(f) := \int_{-\infty}^{\infty} f(x) \, dx = b - a \quad \text{if } f(x) = I_{[a,b)}(x),$$

the *indicator* function of [a, b] (1 in [a, b], 0 outside it), and similarly for the other three choices about end-points.

2. Simple functions.

A function f is called *simple* if it is a finite linear combination of indicators: $f = \sum_{i=1}^{n} c_i f_i$ for constants c_i and indicator functions f_i of intervals I_i . One then extends the definition of the integral from indicator functions to simple functions by linearity:

$$I\left(\sum_{i=1}^{n} c_i f_i\right) := \sum_{i=1}^{n} c_i I(f_i)$$

for constants c_i and indicators f_i of intervals I_i . 3. Non-negative measurable functions. Call f a (Lebesgue-) measurable function if, for all c, the sets $\{x : f(x) \leq c\}$ is a Lebesgue-measurable set (§1). If f is a non-negative measurable function, we quote that it is possible to construct f as the increasing limit of a sequence of simple functions f_n :

$$f_n(x) \uparrow f(x)$$
 for all $x \in \mathbb{R}$ $(n \to \infty)$, f_n simple.

We then define the integral of f as

$$I(f) := \lim_{n \to \infty} I(f_n) \ (\leq \infty)$$

(we quote that this does indeed define I(f): the value does not depend on which approximating sequence (f_n) we use). Since f_n increases in n, so does $I(f_n)$ (the integral is order-preserving), so either $I(f_n)$ increases to a finite limit, or diverges to ∞ . In the first case, we say f is (Lebesgue-) integrable with (Lebesgue-) integral $I(f) = \lim I(f_n)$, or $\int f(x) dx = \lim \int f_n(x) dx$, or simply $\int f = \lim \int f_n$.

4. Measurable functions.

If f is a measurable function that may change sign, we split it into its positive and negative parts, f_{\pm} :

$$f_{+}(x) := \max(f(x), 0), \quad f_{-}(x) := -\min(f(x), 0),$$

$$f(x) = f_{+}(x) - f_{-}(x), \quad |f(x)| = f_{+}(x) + f_{-}(x)$$

If both f_+ and f_- are integrable, we say that f is too, and define

$$\int f := \int f_+ - \int f_-.$$

Then, in particular, |f| is also integrable, and

$$\int |f| = \int f_+ + \int f_-.$$

Note. The Lebesgue integral is, by construction, an *absolute integral*: f is integrable iff |f| is integrable. Thus, for instance, the well-known formula

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

has no meaning for Lebesgue integrals, since $\int_1^\infty \frac{|\sin x|}{x} dx$ diverges to $+\infty$ like $\int_1^\infty \frac{1}{x} dx$. It has to be replaced by the limit relation

$$\int_0^X \frac{\sin x}{x} \, dx \to \frac{\pi}{2} \qquad (X \to \infty).$$

The class of (Lebesgue-) integrable functions f on \mathbb{R} is written $L(\mathbb{R})$ or (for reasons explained below) $L_1(\mathbb{R})$ – abbreviated to L_1 or L. Higher dimensions.

In \mathbb{R}^k , we start instead from k-dimensional boxes. If f is the indicator of a box $B = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_k, b_k]$, $\int f := \prod_{i=1}^k (b_i - a_i)$. We then extend to simple functions by linearity, to non-negative measurable functions by taking increasing limits, and to measurable functions by splitting into positive and negative parts.

L_p spaces.

For $p \geq 1$, the L_p spaces $L_p(\mathbb{R}^k)$ on \mathbb{R}^k are the spaces of measurable functions f with L_p -norm

$$||f||_p := \left(\int |f|^p\right)^{\frac{1}{p}} < \infty.$$

Riemann integrals.

Our first exposure to integration is the 'Sixth-Form integral', taught nonrigorously at school. Mathematics undergraduates are taught a rigorous integral (in their first or second years), the *Riemann integral* [G.B. RIEMANN (1826-1866)] – essentially this is just a rigourization of the school integral. It is much easier to set up than the Lebesgue integral, but much harder to manipulate.

For finite intervals [a, b], we quote:

(i) for any function f Riemann-integrable on [a, b], it is Lebesgue-integrable to the same value (but many more functions are Lebesgue integrable);

(ii) f is Riemann-integrable on [a, b] iff it is continuous a.e. on [a, b]. Thus the question, "Which functions are Riemann-integrable?" cannot be answered without the language of measure theory – which then gives one the technically superior Lebesgue integral anyway.

Note. Integration is like summation (which is why Leibniz gave us the integral sign \int , as an elongated S). Lebesgue was a very practical man – his

father was a tradesman – and used to think about integration in the following way. Think of a shopkeeper totalling up his day's takings. The Riemann integral is like adding up the takings – notes and coins – *in the order in which they arrived*. By contrast, the Lebesgue integral is like totalling up the takings *in order of size* – from the smallest coins up to the largest notes. This is obviously better! In mathematical effect, it exchanges 'integrating by *x*-values' (abscissae) with 'integrating by *y*-values' (ordinates).

Lebesgue-Stieltjes integral.

Suppose that F(x) is a *non-decreasing* function on \mathbb{R} :

$$F(x) \le F(x)$$
 if $x \le y$

(prime example: F a probability distribution function). Such functions can have at most countably many discontinuities, which are at worst jumps. We may without loss re-define F at jumps so as to be *right-continuous*.

We now generalise the starting points above:

- (i) Measure. We take $\mu((a, b]) := F(b) F(a)$.
- (ii) Integral. We take $\int_a^b 1 := F(b) F(a)$.

We may now follow through the successive extension procedures used above. We obtain:

(i) Lebesgue-Stieltjes measure μ , or μ_F ,

(ii) Lebesgue-Stieltjes integral $\int f d\mu$, or $\int f d\mu_F$, or even $\int f dF$.

Similarly in higher dimensions; we omit further details.

Finite variation (FV).

If instead of being monotone non-decreasing, F is the *difference* of two such functions, $F = F_1 - F_2$, we can define the integrals $\int f \, dF_1$, $\int f \, dF_2$ as above, and then define

$$\int f \, dF = \int f \, d(F_1 - F_2) := \int f \, dF_1 - \int f \, dF_2$$

If [a, b] is a finite interval and F is defined on [a, b], a finite collection of points, x_0, x_1, \ldots, x_n with $a = x_0 < x_1 < \cdots < x_n = b$, is called a *partition* of [a, b], \mathcal{P} say. The sum $\sum_{i=1}^{n} |F(x_i) - F(x_{i-1})|$ is called the *variation* of F over the partition. The least upper bound of this over all partitions \mathcal{P} is called the *variation* of F over the interval [a, b], $V_a^b(F)$:

$$V_a^b(F) := \sup_{\mathcal{P}} \sum |F(x_i) - F(x_{i-1})|.$$

This may be $+\infty$; but if $V_a^b(F) < \infty$, F is said to be of finite variation (FV)on [a,b], $F \in FV_a^b$ (bounded variation, BV, is also used). If F is of finite variation on all finite intervals, F is said to be locally of finite variation, $F \in FV_{loc}$; if F is of finite variation on the real line, F is of finite variation, $F \in FV_{loc}$.

We quote (*Jordan's theorem*) that the following are equivalent:

(i) F is locally of finite variation;

(ii) F is the difference $F = F_1 - F_2$ of two monotone functions.

So the above procedure defines the integral $\int f \, dF$ when the *integrator* F is of *finite variation*.

3. Probability.

Probability spaces.

The mathematical theory of probability can be traced to 1654, to correspondence between PASCAL (1623-1662) and FERMAT (1601-1665). However, the theory remained both incomplete and non-rigorous till the 20th century. It turns out that the Lebesgue theory of measure and integral sketched above is exactly the machinery needed to construct a rigorous theory of probability adequate for modelling reality (option pricing, etc.) for us. This was realised by the great Russian mathematician and probabilist A.N.KOLMOGOROV (1903-1987), whose classic book of 1933, *Grundbegriffe der Wahrscheinlichkeitsrechnung* [Foundations of probability theory] inaugurated the modern era in probability.

Recall from your first course on probability that, to describe a random experiment mathematically, we begin with the sample space Ω , the set of all possible outcomes. Each point ω of Ω , or sample point, represents a possible – random – outcome of performing the random experiment. For a set $A \subseteq \Omega$ of points ω we want to know the probability P(A) (or Pr(A), pr(A)). We clearly want

1. $P(\emptyset) = 0$, $P(\Omega) = 1$. 2. $P(A) \ge 0$ for all A. 3. If A_1, A_2, \ldots, A_n are disjoint, $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$ (finite additivity – fa), which, as above we will strengthen to 3*. If $A_1, A_2 \ldots$ (ad inf.) are disjoint,

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$
 (countable additivity – ca).

4. If $B \subseteq A$ and P(A) = 0, then P(B) = 0 (completeness). Then by 1 and 3 (with $A = A_1$, $\Omega \setminus A = A_2$),

$$P(A^c) = P(\Omega \setminus A) = 1 - P(A).$$

So the class \mathcal{F} of subsets of Ω whose probabilities P(A) are defined should be closed under countable, disjoint unions and complements, and contain the empty set \emptyset and the whole space Ω . Such a class is called a σ -field of subsets of Ω [or sometimes a σ -algebra, which one would write \mathcal{A}]. For each $A \in \mathcal{F}$, P(A) should be defined (and satisfy 1, 2, 3*, 4 above). So, $P : \mathcal{F} \to [0, 1]$ is a set-function,

$$P: A \mapsto P(A) \in [0, 1] \quad (A \in \mathcal{F}).$$

The sets $A \in \mathcal{F}$ are called *events*. Finally, 4 says that all subsets of null-sets (events) with probability zero (we will call the empty set \emptyset empty, not null) should be null-sets (completeness). A *probability space*, or *Kolmogorov triple*, is a triple (Ω, \mathcal{F}, P) satisfying these *Kolmogorov axioms* 1,2,3*,4 above. A probability space is a mathematical model of a random experiment.

Random variables.

Next, recall random variables X from your first probability course. Given a random outcome ω , you can calculate the value $X(\omega)$ of X (a scalar – a real number, say; similarly for vector-valued random variables, or random vectors). So, X is a function from Ω to $\mathbb{R}, X \to \mathbb{R}$,

$$X: \omega \mapsto X(\omega) \quad (\omega \in \Omega).$$

Recall also that the *distribution function* of X is defined by

$$F(x)$$
, or $F_X(x)$, $:= P(\{\omega : X(\omega) \le x\})$, or $P(X \le x)$, $(x \in \mathbb{R})$.

We can only deal with functions X for which all these probabilities are defined. So, for each x, we need $\{\omega : X(\omega) \leq x\} \in \mathcal{F}$. We summarize this by saying that X is *measurable* with respect to the σ -field \mathcal{F} (of events), briefly, X is \mathcal{F} -measurable. Then, X is called a random variable [non- \mathcal{F} -measurable X cannot be handled, and so are left out]. So,

(i) a random variable X is an \mathcal{F} -measurable function on Ω ;

(ii) a function on Ω is a random variable (is measurable) iff its distribution function is defined.

Generated σ -fields.

The smallest σ -field containing all the sets $\{\omega : X(\omega) \leq x\}$ for all real x [equivalently, $\{X < x\}, \{X \geq x\}, \{X > x\}$]² is called the σ -field generated by X, written $\sigma(X)$. Thus,

X is
$$\mathcal{F}$$
-measurable [is a random variable] iff $\sigma(X) \subseteq \mathcal{F}$.

When the (random) value $X(\omega)$ is *known*, we know *which* of the events in the σ -field generated by X have happened: these are the events { $\omega : X(\omega) \in B$ }, where B runs through the Borel σ -field [the σ -field generated by the intervals – it makes no difference whether open, closed etc.] on the line.

Interpretation.

Think of $\sigma(X)$ as representing what we know when we know X, or in other words the information contained in X (or in knowledge of X). This is from the following result, due to J. L. DOOB (1910-2004), which we quote:

$$\sigma(X) \subseteq \sigma(Y) \quad \text{iff} \quad X = g(Y)$$

for some measurable function g. For, knowing Y means we know X := g(Y)– but not vice-versa, unless the function g is one-to-one [injective], when the inverse function g^{-1} exists, and we can go back via $Y = g^{-1}(X)$.

Expectation.

A measure (II.1) determines an integral (II.2). A probability measure P, being a special kind of measure [a measure of total mass one] determines a special kind of integral, called an *expectation*.

Definition. The expectation E of a random variable X on (Ω, \mathcal{F}, P) is defined by

$$E[X] := \int_{\Omega} X \, dP, \text{ or } \int_{\Omega} X(\omega) \, dP(\omega).$$

If X is real-valued, say, with distribution function F, recall (Ch. I) that EX is defined in your first course on probability by

$$E[X] := \int x f(x) \, dx$$
 if X has a density f

²Here, and in Measure Theory, whether intervals are open, closed or half-open doesn't matter. In Topology, such distinctions are crucial. One can combine Topology and Measure Theory, but we must leave this here.

or if X is discrete, taking values x_n , (n = 1, 2, ...) with probability function $f(x_n) (\geq 0)$, $(\sum f(x_n) = 1)$,

$$E[X] := \sum x_n f(x_n)$$

(weighted average of possible values, weighted according to their probability). These two formulae are the special cases (for the density and discrete cases) of the general formula

$$E[X] := \int_{-\infty}^{\infty} x \ dF(x)$$

where the integral on the right is a Lebesgue-Stieltjes integral. This in turn agrees with the definition above, since if F is the distribution function of X,

$$\int_{\Omega} X \ dP = \int_{-\infty}^{\infty} x \ dF(x)$$

follows by the *change of variable formula* for the measure-theoretic integral, on applying the map $X : \Omega \to \mathbb{R}$ (we quote this: see any book on Measure Theory).

Glossary. We now have two parallel languages, measure-theoretic and probabilistic:

Measure	Probability
Integral	Expectation
Measurable set	Event
Measurable function	Random variable
almost-everywhere (a.e.)	almost-surely (a.s.)

§4. Equivalent Measures and Radon-Nikodym derivatives.

Given two measures P and Q defined on the same σ -field \mathcal{F} , we say that P is *absolutely continuous* with respect to Q, written

if P(A) = 0 whenever Q(A) = 0, $A \in \mathcal{F}$. We quote from measure theory the vitally important *Radon-Nikodym theorem:* $P \ll Q$ iff there exists a (\mathcal{F}) -measurable function f such that

$$P(A) = \int_A f \ dQ \quad \forall A \in \mathcal{F}$$

(note that since the integral of anything over a null set is zero, any P so representable is certainly absolutely continuous with respect to Q – the point is that the converse holds). Since $P(A) = \int_A dP$, this says that

$$\int_A dP = \int_A f \ dQ \ \forall A \in \mathcal{F}$$

By analogy with the chain rule of ordinary calculus, we write dP/dQ for f; then

$$\int_{A} dP = \int_{A} \frac{dP}{dQ} dQ \quad \forall A \in \mathcal{F}.$$

Symbolically,

$$\text{if }P << Q, \quad dP = \frac{dP}{dQ} dQ.$$

The measurable function (= random variable) dP/dQ is called the *Radon-Nikodym derivative* (RN-derivative) of P with respect to Q.

If $P \ll Q$ and also $Q \ll P$, we call P and Q equivalent measures, written $P \sim Q$. Then dP/dQ and dQ/dP both exist, and

$$\frac{dP}{dQ} = 1 \Big/ \frac{dQ}{dP}.$$

For $P \sim Q$, P(A) = 0 iff Q(A) = 0: P and Q have the same null sets. Taking negations: $P \sim Q$ iff P, Q have the same sets of positive measure. Taking complements: $P \sim Q$ iff P, Q have the same sets of probability one [the same a.s. sets]. Thus the following are equivalent: $P \sim Q$ iff P, Q have the same null sets/the same a.s. sets/the same sets of positive measure.

Note. Far from being an abstract theoretical result, the Radon-Nikodym theorem is of key practical importance, in two ways:

(a) It is the key to the concept of conditioning ("using what we know" - §5, §6 below), which is of central importance throughout,

(b) The concept of equivalent measures is central to the key idea of mathematical finance, *risk-neutrality*, and hence to its main results, the *Black-Scholes formula*, the Fundamental Theorem of Asset Pricing (FTAP), etc. The key to all this is that prices should be the *discounted expected values* under the equivalent martingale measure. Thus equivalent measures, and the operation of *change of measure*, are of central economic and financial importance. We shall return to this later in connection with the main mathematical result on change of measure, *Girsanov's theorem* (VII.4). Recall that we first met the phrase 'equivalent martingale measure' in II.5 above. We now know what a measure is, and what equivalent measures are; we will learn about martingales in III.3 below.

§5. Conditional Expectations.

Suppose that X is a random variable, whose expectation exists (i.e. $E[|X|] < \infty$, or $X \in L_1$). Then E[X], the expectation of X, is a scalar (a number) – non-random. The expectation operator E averages out all the randomness in X, to give its mean (a weighted average of the possible value of X, weighted according to their probability, in the discrete case).

It often happens that we have *partial information* about X – for instance, we may know the value of a random variable Y which is associated with X, i.e. carries information about X. We may want to average out over the remaining randomness. This is an expectation conditional on our partial information, or more briefly a conditional expectation.

This idea will be familiar already from elementary courses, in two cases (see e.g. [BF]):

1. Discrete case, based on the formula

$$P(A|B) := P(A \cap B)/P(B)$$
 if $P(B) > 0$.

If X takes values x_1, \dots, x_m with probabilities $f_1(x_i) > 0$, Y takes values y_1, \dots, y_n with probabilities $f_2(y_j) > 0$, (X, Y) takes values (x_i, y_j) with probabilities $f(x_i, y_j) > 0$, then

(i) $f_1(x_i) = \sum_j f(x_i, y_j), \quad f_2(y_j) = \sum_i f(x_i, y_j),$ (ii) $P(Y = y_j | X = x_i) = P(X = x_i, Y = y_j) / P(X = x_i) = f(x_i, y_j) / f_1(x_i)$

$$= f(x_i, y_j) / \sum_j f(x_i, y_j).$$

This is the conditional distribution of Y given $X = x_i$, written

$$f_{Y|X}(y_j|x_i) = f(x_i, y_j) / f_1(x_i) = f(x_i, y_j) / \sum_j f(x_i, y_j).$$

Its expectation is

$$E[Y|X = x_i] = \sum_j y_j f_{Y|X}(y_j|x_i)$$

$$= \sum_{j} y_j f(x_i, y_j) / \sum_{j} f(x_i, y_j)$$

But this approach only works when the events on which we condition have *positive* probability, which only happens in the *discrete* case.

2. Density case. Formally replacing the sums above by integrals: if (X, Y) has density f(x, y),

X has density
$$f_1(x) := \int_{-\infty}^{\infty} f(x, y) dy$$
, Y has density $f_2(y) := \int_{-\infty}^{\infty} f(x, y) dx$.

We define the conditional density of Y given X = x by the continuous analogue of the discrete formula above:

$$f_{Y|X}(y|x) := f(x,y)/f_1(x) = f(x,y)/\int_{-\infty}^{\infty} f(x,y)dy$$

Its expectation is

$$E[Y|X=x] = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy = \int_{-\infty}^{\infty} y f(x,y) dy / \int_{-\infty}^{\infty} f(x,y) dy.$$

Example: Bivariate normal distribution, $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.

$$E[Y|X = x] = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1),$$

the familiar *regression line* of statistics (linear model: [BF, Ch. 1]). See I.4.

Kolmogorov's approach: conditional expectations via σ -fields

The problem is that joint densities need not exist – do not exist, in general. One of the great contributions of Kolmogorov's classic book of 1933 was the realization that measure theory – specifically, the *Radon-Nikodym theorem* –provides a way to treat conditioning in general, without assuming that we are in the discrete case or density case above.

Recall that the probability triple is (Ω, \mathcal{F}, P) . Take \mathcal{B} a sub- σ -field of \mathcal{F} , $\mathcal{B} \subset \mathcal{F}$ (recall: a σ -field represents information; the big σ -field \mathcal{F} represents 'knowing everything', the small σ -field \mathcal{B} represents 'knowing something').

Suppose that Y is a non-negative random variable whose expectation exists: $E[Y] < \infty$. The set-function

$$Q(B) := \int_{B} Y dP \qquad (B \in \mathcal{B})$$

is non-negative (because Y is), σ -additive – because

$$\int_{B} YdP = \sum_{n} \int_{B_{n}} YdP$$

if $B = \bigcup_n B_n$, B_n disjoint – and defined on the σ -algebra \mathcal{B} , so is a measure on \mathcal{B} . If P(B) = 0, then Q(B) = 0 also (the integral of anything over a null set is zero), so $Q \ll P$. By the Radon-Nikodym theorem (III.4), there exists a Radon-Nikodym derivative of Q with respect to P on \mathcal{B} , which is \mathcal{B} -measurable [in the Radon-Nikodym theorem as stated in III.4, we had \mathcal{F} in place of \mathcal{B} , and got a random variable, i.e. an \mathcal{F} -measurable function. Here, we just replace \mathcal{F} by \mathcal{B} .] Following Kolmogorov (1933), we call this Radon-Nikodym derivative the conditional expectation of Y given (or conditional on) \mathcal{B} , $E[Y|\mathcal{B}]$: this is \mathcal{B} -measurable, integrable, and satisfies

$$\int_{B} Y dP = \int_{B} E[Y|\mathcal{B}] dP \qquad \forall B \in \mathcal{B}.$$
 (*)

In the general case, where Y is a random variable whose expectation exists $(E[|Y|] < \infty)$ but which can take values of both signs, decompose Y as

$$Y = Y_+ - Y_-$$

and define $E[Y|\mathcal{B}]$ by linearity as

$$E[Y|\mathcal{B}] := E[Y_+|\mathcal{B}] - E[Y_-|\mathcal{B}]$$

Suppose now that \mathcal{B} is the σ -field generated by a random variable X: $\mathcal{B} = \sigma(X)$ (so \mathcal{B} represents the information contained in X, or what we know when we know X). Then $E[Y|\mathcal{B}] = E[Y|\sigma(X)]$, which is written more simply as E[Y|X]. Its defining property is

$$\int_{B} Y dP = \int_{B} E[Y|X] dP \qquad \forall B \in \sigma(X).$$

Similarly, if $\mathcal{B} = \sigma(X_1, \cdots, X_n)$ (\mathcal{B} is the information in (X_1, \cdots, X_n)) we write $E[Y|\sigma(X_1, \cdots, X_n]$ as $E[Y|X_1, \cdots, X_n]$:

$$\int_{B} Y dP = \int_{B} E[Y|X_1, \cdots, X_n] dP \qquad \forall B \in \sigma(X_1, \cdots, X_n)$$

Note.

1. To check that something is a conditional expectation: we have to check that it integrates the right way over the right sets [i.e., as in (*)].

2. From (*): if two things integrate the same way over all sets $B \in \mathcal{B}$, they have the same conditional expectation given \mathcal{B} .

3. For notational convenience, we use $E[Y|\mathcal{B}]$ and $E_{\mathcal{B}}Y$ interchangeably.

4. The conditional expectation thus defined coincides with any we may have already encountered - in regression or multivariate analysis, for example. However, this may not be immediately obvious. The conditional expectation defined above – via σ -fields and the Radon-Nikodym theorem – is rightly called by Williams ([W], p.84) 'the central definition of modern probability'. It may take a little getting used to. As with all important but non-obvious definitions, it proves its worth in action: see III.6 below for properties of conditional expectations, and Chapter IV for stochastic processes, particularly martingales [defined in terms of conditional expectations].

§6. Properties of Conditional Expectations.

1. $\mathcal{B} = \{\emptyset, \Omega\}$. Here \mathcal{B} is the *smallest* possible σ -field (*any* σ -field of subsets of Ω contains \emptyset and Ω), and represents 'knowing nothing'.

$$E[Y|\{\emptyset,\Omega\}] = EY.$$

Proof. We have to check (*) of §5 for $B = \emptyset$ and $B = \Omega$. For $B = \emptyset$ both sides are zero; for $B = \Omega$ both sides are EY. //

2. $\mathcal{B} = \mathcal{F}$. Here \mathcal{B} is the *largest* possible σ -field: 'knowing everything'.

$$E[Y|\mathcal{F}] = Y \qquad P - a.s.$$

Proof. We have to check (*) for all sets $B \in \mathcal{F}$. The only integrand that integrates like Y over all sets is Y itself, or a function agreeing with Y except on a set of measure zero.

Note. When we condition on \mathcal{F} ('knowing everything'), we know Y (because we know everything). There is thus no uncertainty left in Y to average out, so taking the conditional expectation (averaging out remaining randomness) has no effect, and leaves Y unaltered. 3. If Y is \mathcal{B} -measurable, $E[Y|\mathcal{B}] = Y \qquad P-a.s.$

Proof. Recall that Y is always \mathcal{F} -measurable (this is the definition of Y being a random variable). For $\mathcal{B} \subset \mathcal{F}$, Y may not be \mathcal{B} -measurable, but if it is, the proof above applies with \mathcal{B} in place of \mathcal{F} .

Note. If Y is \mathcal{B} -measurable, when we are given \mathcal{B} (that is, when we condition on it), we know Y. That makes Y effectively a constant, and when we take the expectation of a constant, we get the same constant.

4. If Y is \mathcal{B} -measurable, $E[YZ|\mathcal{B}] = YE[Z|\mathcal{B}] \qquad P-a.s.$ We refer for the proof of this to [W], p.90, proof of (j).

Note. Williams calls this property 'taking out what is known'. To remember it: if Y is \mathcal{B} -measurable, then given \mathcal{B} we know Y, so Y is effectively a constant, so can be taken out through the integration signs in (*), which is what we have to check (with YZ in place of Y).

5. If $C \subset \mathcal{B}$, $E[E[Y|\mathcal{B}]|\mathcal{C}] = E[Y|\mathcal{C}]$ a.s. *Proof.* $E_{\mathcal{C}}E_{\mathcal{B}}Y$ is \mathcal{C} -measurable, and for $C \in \mathcal{C} \subset \mathcal{B}$,

$$\int_{C} E_{\mathcal{C}}[E_{\mathcal{B}}Y]dP = \int_{C} E_{\mathcal{B}}YdP \quad (\text{definition of } E_{\mathcal{C}} \text{ as } C \in \mathcal{C})$$
$$= \int_{C} YdP \quad (\text{definition of } E_{\mathcal{B}} \text{ as } C \in \mathcal{B}).$$

So $E_{\mathcal{C}}[E_{\mathcal{B}}Y]$ satisfies the defining relation for $E_{\mathcal{C}}Y$. Being also \mathcal{C} -measurable, it is $E_{\mathcal{C}}Y$ (a.s.). //

5'. If $C \subset \mathcal{B}$, $E[E[Y|\mathcal{C}]|\mathcal{B}] = E[Y|\mathcal{C}]$ a.s. *Proof.* $E[Y|\mathcal{C}]$ is C-measurable, so \mathcal{B} -measurable as $\mathcal{C} \subset \mathcal{B}$, so $E[.|\mathcal{B}]$ has no effect on it, by 3.

Note. 5, 5' are the two forms of the *iterated conditional expectations property*. When conditioning on two σ -fields, one larger (finer), one smaller (coarser), the coarser rubs out the effect of the finer, either way round. This is also called the *coarse-averaging property*, or (Williams [W]) the *tower property*.

6. Conditional Mean Formula. $E[E[Y|\mathcal{B}]] = EY \quad P-a.s.$ Proof. Take $\mathcal{C} = \{\emptyset, \Omega\}$ in 5 and use 1. // Example. Check this for the bivariate normal distribution considered above. *Note.* Compare this with the *Conditional Variance Formula* of Statistics: see e.g. SMF, IV.6, or Ch. VIII.

7. Role of independence. If Y is independent of \mathcal{B} ,

$$E[Y|\mathcal{B}] = E[Y] \qquad a.s.$$

Proof. See $[\mathbf{W}]$, p.88, 90, property (k).

Note. In the elementary definition $P(A|B) := P(A \cap B)/P(B)$ (if P(B) > 0), if A and B are independent (that is, if $P(A \cap B) = P(A).P(B)$), then P(A|B) = P(A): conditioning on something independent has no effect. One would expect this familiar and elementary fact to hold in this more general situation also. It does – and the proof of this rests on the proof above.

Projections. In Property 5 (tower property), take $\mathcal{B} = \mathcal{C}$:

 $E[E[X|\mathcal{C}]|\mathcal{C}] = E[X|\mathcal{C}].$

This says that the operation of taking conditional expectation given a sub- σ -field C is *idempotent* – doing it twice is the same as doing it once. Also, taking conditional expectation is a *linear* operation (it is defined via an integral, and integration is linear). Recall from Linear Algebra that we have met such idempotent linear operations before. They are the *projections*. (Example: $(x, y, z) \mapsto (x, y, 0)$ projects from 3-dimensional space onto the (x, y)-plane.) This view of conditional expectation as projection is useful and powerful; see e.g. [BK], [BF] or

[N] J. Neveu, Discrete-parameter martingales (North-Holland, 1975), I.2.

It is particularly useful when one has not yet got used to conditional expectation defined measure-theoretically as above, as it gives us an alternative (and perhaps more familiar) way to think.