
M3A22/M4A22 EXAMINATION SOLUTIONS 2015-16

Q1. (a) Limited liability.
A company engages in trading, which is risky; it may be unable to meet

its obligations, and go bankrupt. The company is owned by its shareholders.
They are liable for its debts, but only up to the value of their investment:
their liability is limited (hence, plc [public limited company – earlier, ‘& Co.
Ltd.’]). Limited liability emerged in the mid-19th C. Before this, shareholders
had unlimited liability, and could be sued for the whole of the loss suffered by
a creditor. This made trading very dangerous [early merchants were called
merchant adventurers; one could end up in a debtors’ prison this way; Lloyds
names had unlimited liability in the scandal of the 1990s]. [5]
(b) Moral hazard.

This is the danger that people are less careful with other people’s money
than they are with their own [hence the title of John Kay’s book Other
people’s money, 2015]. This is most common with aggressively risky trading,
which if it succeeds benefits the trader [bonus, etc.], but if it fails, the loss
is born by others [the shareholders of the company]. Examples abound: the
dot-com bubble; hedge funds; the behaviour of the banks before the Credit
Crunch, etc. This is why there is pressure [from e.g. the Governor of the
Bank of England] to make bankers etc. personally liable, under the criminal
law, for misbehaviour ‘on their watch’. [5]
(c) Liquidity.

Markets are liquid when one can buy or sell freely at the quoted prices.
Typically, heavily traded stocks are liquid under normal market conditions.
In a crisis, credit dries up [Credit Crunch – really a banking crisis], not
enough cash is available to finance trades, and no one wants to trade. Rarely
traded items are illiquid – and so are hard to value. [5]
(d) Size of traders.

Small economic agents are price takers. They have no power to influence
prices, which they can either take or leave – but equally, do have the power
to enter the market without thereby moving the market against them. By
contrast, large economic agents are price makers. They do have the power
to influence prices – but against this, are visible, and so are vulnerable,
when forced to enter the market through weakness (examples: the financial
authorities of a major country, defending the value of its currency by buying
it on the market; a big company forced into a ‘fire sale’). [5]
[Mainly seen in lectures; discussed in class]
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Q2. American options. The discounting rate per unit time is 1+ρ. With
‘up’ and ‘down’ factors 1+u, 1+d and ‘up’ and ‘down’ probabilities q, 1−q,
the discounted price process is a martingale iff (1+u)q+(1+d)(1−q) = 1+ρ:

uq + d(1− q) = ρ; (u− d)q = ρ− d : q =
ρ− d

u− d
. [2]

To price the American put in this (Cox-Ross-Rubinstein) binomial-tree model:
1. Draw a binary tree showing the initial stock value S and with the right
number, N , of time-intervals. [2]
2. Fill in the stock prices: after one time interval, these are Su (upper) and
Sd (lower); after two, Su2, Sud and Sd2; after i time-intervals, Sujdi−j at
the node with j ‘up’ steps and i− j ‘down’ steps. [2]
3. Using the strike price K and the prices at the terminal nodes, fill in the
payoffs (fN,j = max[K − SujdN−j, 0]) from the option at the terminal nodes
(where the values of the European and American options coincide). [2]
4. Work back down the tree one time-step. Fill in (a) the ‘European’ value at
the penultimate nodes as the discounted values of the terminal values, under
the risk-neutral (P ∗, Q) measure – ‘q times upper right plus 1−q times lower
right’; (b) the ‘intrinsic’ (early-exercise) value; (c) the American put value
as the higher of these. [2]
5. Treat these values as ‘terminal node values’, and fill in the values one
time-step earlier by repeating Step 4 for this ‘reduced tree’. [2]
6. Iterate. The value of the American put at time 0 is the value at the
root - the last node to be filled in. The ‘early-exercise region’ is the node
set where the early-exercise value is the higher; the rest is the ‘continuation
region’. [2]
Connection with the Snell envelope.

Let Z = (Zn)
N
n=0 be the payoff on exercising at time n. To price Zn, by

Un say, so as to avoid arbitrage: we work backwards in time. Recursively:

UN := ZN , Un−1 := max(Zn−1,
1

1 + ρ
E∗[Un|Fn−1]), [2]

the first alternative on the right corresponding to early exercise, the second to
the discounted expectation under P ∗ (or Q), as usual. Let Ũn = Un/(1+ ρ)n

be the discounted price of the American option. Then

ŨN = Z̃N , Ũn−1 = max(Z̃n−1, E
∗[Ũn|Fn−1]) : [2]

(Ũn) is the Snell envelope of the discounted payoff process (Z̃n). [2]
[Seen – lectures]
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Q3. Black-Scholes formula (BS).
(a) The SDE for GBM(µ, σ) is dSt = St(µdt + σdWt) with W = (Wt) BM.
Its solution is St = S0 exp{(µ− 1

2
σ2)t+ σWt}. [4]

(b) By Girsanov’s Theorem, change probability measure from P to P ∗ and
from GBM(µ, σ) to GBM(r, σ), and from time-interval [0, t] to [t, T ]. With
W a P ∗-Brownian motion, we can write ST explicitly as

ST = St exp{(r −
1

2
σ2)(T − t) + σ(WT −Wt)}.

Now WT −Wt is normal N(0, T − t), so (WT −Wt)/
√
T − t =: Z ∼ N(0, 1):

ST = s exp{(r − 1

2
σ2)(T − t) + σZ

√
T − t}, s := St, Z ∼ N(0, 1).

So by the Risk-Neutral Valuation Formula, the pricing formula is

Ct = e−r(T−t)

∫ ∞

−∞

e−
1
2
x2

√
2π

[s exp{(r− 1

2
σ2)(T − t)+σ(T − t)

1
2x}−K]+dx. [6]

(c) To derive BS, evaluate the integral. First, [...] > 0 where

S0 exp{(r −
1

2
σ2)T + σ

√
Tx} > K, (r − 1

2
σ2)T + σ

√
Tx > log(K/S0) :

x > [log(K/S0)− (r − 1

2
σ2)T ]/σ

√
T = c, say. So.

C0 = S0

∫ ∞

c

e−
1
2
σ2T . exp{−1

2
x2 + σ

√
Tx}dx/

√
2π −Ke−rT [1− Φ(c)],

and the last term is Ke−rTΦ(−c) = Ke−rTΦ(d−). The remaining integral is∫ ∞

c

exp{−1

2
(x− σ

√
T )

2
}dx/

√
2π =

∫ ∞

c−σ
√
T

exp{−1

2
u2}du/

√
2π

= 1− Φ(c− σ
√
T ) = Φ(−c+ σ

√
T ) = Φ(d+),

as −c + σ
√
T = d+ when t = 0. So the option price is given in terms of the

initial price S0, strike price K, expiry T , interest rate r and volatility σ by

C0 = S0Φ(d+)−Ke−rTΦ(d−), d± := [log(S0/K) + (r ± 1

2
σ2)T ]/σ

√
T . //

[10]
[Seen – lectures]
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Q4. Real options. (a) With starting value x, to solve the optimal stopping
problem

V (x) := max
τ

E[(Xτ − I)e−rτ ]

– buying an asset of value X for a cost I, at time τ chosen optimally. [3]
(b) If µ ≤ 0, the (mean) value of the project will decrease. So we invest
immediately if x > I (with immediate profit x − I > 0), and do not invest
otherwise. If µ > r, the (mean) growth will swamp the riskless interest rate
(in the long run – Law of Large Numbers), so the investment is worthwhile:
again invest immediately as there is no point in waiting. If µ = r, there is
no point in taking the risk of investing, so we should not invest. [3]
(c) There remains the case 0 < µ < r. Using the infinitesimal generator, one
gets the differential equation (Bellman equation)

1

2
σ2x2V ′′(x) + µxV ′(x)− rV (x) = 0,

with V (0) = 0 (we get nothing from something worth nothing). A suitable
trial solution is V (x) = Cxp. This leads to a quadratic equation in p:

Q(p) :=
1

2
σ2p(p− 1) + µp− r = 0.

The product of the roots is negative, and Q(0) = −r < 0, Q(1) = µ− r < 0.
So one root p1 > 1 and the other p2 < 0. [4]
(d) The general solution is V (x) = C1x

p1 +C2x
p2 , but from V (0) = 0 we get

C2 = 0, so V (x) = C1x
p1 , or V (x) = Cxp1 . If x∗ is the critical value at which

it is optimal to invest, ‘value matching’ and ‘smooth pasting’ give

V (x∗) = x∗ − I, V ′(x∗) = 1. [4]

From these two equations, we can find C and x∗:

V ′(x∗) = Cp1(x
∗)p1−1 = 1, C = (x∗)1−p1/p1.

Then value matching gives

C(x∗)p1 = x∗ − I, x∗/p1 = x∗ − I, I = x∗.(1− 1/p1) : x∗ =
p1

(p1 − 1)
I.

So we should not invest if the initial value x is below x∗ = qI, where q :=
p1/(p1 − 1) (”Tobin’s q”). [4]
(e) Arbitrage arguments are absent here, as these depend on repeated trading
either way, and this investment is a one-off, one way. [2]
[Seen, lectures, (a) - (d); (e) unseen]
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Q5 Mastery Question.
(i) Sharpe ratio. The Sharpe ratio is θ := (µ− r)/σ: the excess return µ− r
(the investor’s reward for taking a risk), compared with the degree of risk as
measured by σ. [2]
(ii) Derivation of the Black-Scholes formula via Girsanov’s Theorem.

We summarise the main steps briefly as follows:
(a) Dynamics are given by GBM , dSt = µSdt+ σSdWt. [1]
(b) Discount: dS̃t = (µ− r)S̃dt+ σS̃dWt = σS̃(θdt+ dWt). [1]
(c) Use Girsanov’s Theorem to change µ to r, so θ := (µ− r)/σ to 0: under
P ∗, dS̃t = σS̃dWt. [1]
(d) With V the value process, H the strategy, h the payoff, dṼt(H) = HtdS̃t =
Ht.σS̃dWt. Integrate: Ṽ gives a P ∗-mg, so has constant E∗-expectation. [1]
(e) This gives the Risk-Neutral Valuation Formula (RNVF). [1]
(f) From RNVF, we can obtain the Black-Scholes formula, by integration. [1]
(iii) Hedging strategy.

We seek a hedging strategy H = (H0
t , Ht) (H

0
t for cash, Ht for stock) that

replicates the value process V = (Vt), given by RNVF:

Vt = H0
t +HtSt = E∗[e−r(T−t)h|Ft]. [2]

Now
Mt := E∗[e−rTh|Ft] [2]

is a (uniformly integrable) martingale under the filtration Ft, that of the driv-
ing BM in (GBM), and the filtration is unchanged by the Girsanov change
of measure. So by the Representation Theorem for Brownian Martingales,
there is some adapted process K = (Kt) with

Mt = M0 +

∫ t

0

KsdWs (t ∈ [0, T ]). [2]

Take
Ht := Kt/(σS̃t), H0

t := Mt −HtS̃t : [2]

dMt = KtdWt =
Kt

σS̃t

.σS̃tdWt = HtdS̃t, [2]

and the strategy K is self-financing.
(iv) Limitations.

This is of limited practical value: [1]
(a) the Representation Theorem does not give K = (Kt) explicitly; [1]
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(b) as Brownian paths have infinite variation, exact hedging in the Black-
Scholes model is too rough to be practically possible. [1]
(v) Practical implementation.

In practice, one would work instead in discrete time. Divide the time-
interval [0, T ] into a suitably large number N of equal intervals. For each
interval, the hedging strategy may be calculated simply, as in the binary one-
period model (two simultaneous linear equations in two unknowns). This is
simple to programme, and simple to implement by computer. [4]
[(i) - (iv) seen – lectures; (v) unseen] N. H. Bingham
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