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Chapter VII. INSURANCE MATHEMATICS

I. Insurance Background
The idea of insurance is simple: it is the spreading, or pooling, of risk.

The relevant theory is that of collective risk.
History.

Insurance can be traced back to antiquity (Greek and Roman times). Like
much else, it disappeared, to be re-developed in Renaissance Italy (Genoa,
14th C.). It received a great impetus in the UK from the Great Fire of Lon-
don in 1666; fire insurance had started there by 1681. Property insurance
had begun in London by 1710, and in Philadelphia (Benjamin Franklin) in
1752.

Shipping insurance grew in London around Edward Lloyd’s coffee house
in the 1680s. He died in 1710; Lloyd’s of London had developed by 1774.

John Graunt (1620-74) published his Bills of Mortality in 1662 (breaking
down London deaths by cause, age etc.). This was followed by the first life
table (Edmund Halley, 1693). Mutual life insurance had begun by 1762. One
of the earliest such companies is Scottish Widows (1815) (founded to look
after the widows of Presbyterian ministers who died in office, and had to
leave the manse – the minister’s house).

At a national level, national insurance began in Germany with Bismarck
in the 1880s. It developed here with e.g. Lloyd George (pre-WWI), Bev-
eridge and the Beveridge Report (1942), and the founding of the Welfare
State post-WWII.
Limited liability.

Lloyd’s of London pre-dates limited liability (which developed in the mid-
19th C.). The Lloyd’s participants, or names, had unlimited liability, and
were liable for the full extent of losses, irrespective of their investment or
their assets. This changed, following the Lloyd’s scandal of the 1990s.

Insurance is now done (and most was before the Lloyd’s scandal) by lim-
ited liability companies. So for these, the possibility of ruin is crucial. Not
only would this wipe out the company, its assets and expertise, the jobs of
its employees etc., but it would leave policy-holders without cover.
Reinsurance.

Because a run of large claims could bankrupt an insurance company,
companies seek to lay off large risks – to reinsure – insure themselves – with
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larger, specialist reinsurance companies.
The question arises as to where reinsurane companies re-reinsure them-

selves ... This raises the modern form of Juvenal’s question (Satires, c. 80
AD): Quis custodiet ipsos custodes – Who guards the guards? Who polices
the police? Reinsurers reinsure insurers, but – who reinsures the reinsurers?
– etc.
Regulation.

It is in the interest of some industries to agree to cover each other’s lia-
bilities in the event of a bankruptcy. For instance, this happens with travel
firms. If a travel firm goes bust, leaving large numbers of people stranded
abroad, or unable to travel on a foreign holiday booked and paid for, this
would destroy public confidence in the whole industry – unless other firms,
by prior agreement, step in to cover. This is what happens, and works well.

As motor insurance is compulsory by law, motor insurance companies are
regulated by the state, and again, this provides a degree of protection in case
of bankruptcy.
The actuarial profession.

People involved in the insurance industry have been known as actuaries
from the early days of insurance. Companies offering insurance employ actu-
aries, and these need to be qualified. Actuaries become qualified by passing
exams set by the Institute of Actuaries. London is an important centre for
the actuarial/insurance industry, and so is Edinburgh. The mathematics
involved is interesting, and useful. Those taking this course would be well
advised to consider an actuarial career as one of their career possibilities.
Life v. non-life.

The usual way the modern insurance industry splits is between life and
non-life. Life insurance is payable on death, and/or as an annuity ceasing
on death. Life insurance is often combined with a mortgage (so that the
mortgage is paid if one dies before it expires). Naturally, assessing premiums
here depends on a detailed knowledge of mortality rates over ages, etc. The
relevant mathematics is largely Survival Analysis – hazard rates, etc. Much
use is made here nowadays of martingale methods (Ch. IV). Non-life splits
again into categories: motor; house; (house) contents (these are the only
three kinds of insurance ordinary people take out); (personal) accident (the
next commonest); travel; commercial property; industrial; ... There are even
catastrophe insurance, weather insurance etc. nowadays.
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2. The Poisson Process; Compound Poisson Processes

The Poisson distribution.
This is defined on N0 := {0, 1, 2, · · ·} for a parameter λ > 0 by

pk := e−λλk/k! (k = 0, 1, 2, · · ·).

From the exponential series,
∑

kpk = 1, so this does indeed give a probability
distribution (or law, for short) on N0. It is called the Poisson distribution
P (λ), with parameter λ, after S.-D. Poisson (1781-1840) in 1837.

The Poisson law has mean λ. For if N is a random variable with the
Poisson law P (λ), N ∼ P (λ), N has mean

E[N ] =
∑

kP (N = k) =
∑

kpk =
∑

k.e−λλk/k! = λ
∑

e−λλk−1/(k−1)! = λ,

as the sum is 1 (exponential series – P (λ) is a probability law). Similarly,

E[N(N − 1)] =
∑

k(k − 1)e−λλk/k! = λ2
∑

e−λλk−2/(k − 2)! = λ2 :

var(N) = E[N2]−(E[N ])2) = E[N(N−1)]+E[N ]−(E[N ])2) = λ2+λ−(λ)2 = λ :

the Poisson law P (λ) with parameter λ has mean λ and variance λ.
Note. 1. The Poisson law is the commonest one for count data on N0.
2. This property – that the mean and variance are equal (to the parameter,
λ) is very important and useful. It can be used as the basis for a test for
Poissonianity, the Poisson dispersion test. Data with variance greater than
the Poisson are called over-dispersed; data with variance less than Poisson
are under-dispersed.
3. The variance calculation above used the (second) factorial moment,
E[N(N − 1)]. These are better for count data than ordinary moments.

The Exponential Distribution
A random variable T on R+ := (0,∞) is said to have an exponential

distribution with rate (or parameter) λ, T ∼ E(λ), if

P (T ≤ t) = 1− e−λt for all t ≥ 0.

So this law has density

f(t) := λe−λt (t > 0), 0 (t ≤ 0)
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(as
∫ t
−∞ f(u)du = P (T ≤ t), as required). So the mean is

E[T ] =

∫
tf(t)dt =

∫ ∞
0

λte−λtdt = 1/λ.

∫ ∞
0

ue−udu = 1/λ

(putting u := λt). Similarly,

E[T 2] =

∫
t2f(t)dt =

∫ ∞
0

λt2e−λtdt = 1/λ2
∫ ∞
0

u2e−udu = 2/λ2,

var(T ) = E[T 2]− (E[T ])2 = 2/λ2 − (1/λ)2 = 1/λ2.

The Lack-of-Memory Property.
Imagine components – lightbulbs, say – which last a certain lifetime, and

are then discarded and replaced. Do we expect to see aging? With human
lifetimes, of course we do! On average, there is much less lifetime remaining
in an old person than in a young one. With some machine components,
we also see aging. This is why parts in cars, aeroplanes etc. are replaced
after their expected (or ‘design’) lifetime, at routine servicing. But, some
components do not show aging. These things change with technology, but in
the early-to-mid 20th C. lightbulbs typically didn’t show aging. Nor in the
early days of television did television tubes (not used in modern televisions!).
In Physics, the atoms of radioactive elements show lack of memory. This is
the basis for the concept of half-life: it takes the same time for half a quantity
of radioactive material to decay as it does for half the remaining half, etc.

We can find which laws show no aging, as follows. The law F has the
lack-of-memory property iff the components show no aging – that is, if a
component still in use behaves as if new. The condition for this is

P (X > s+ t|X > s) = P (X > t) (s, t > 0) :

P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).

Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt
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for some λ > 0 – the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0)

is a ‘functional equation’ – the Cauchy functional equation – and we quote
that these are the only solutions, subject to minimal regularity (such as one-
sided boundedness, as here – even on an interval of arbitrarily small length!).

So the exponential laws E(λ) are characterized by the lack-of-memory
property. Also, the lack-of-memory property corresponds in the renewal con-
text to the Markov property. The renewal process generated by E(λ) is
called the Poisson (point) process with rate λ, Ppp(λ). So: among renewal
processes, the only Markov processes are the Poisson processes. We meet
Lévy processes below: among renewal processes, the only Lévy processes are
the Poisson processes.

It is the lack of memory property of the exponential distribution that
(since the inter-arrival times of the Poisson process are exponentially dis-
tributed) makes the Poisson process the basic model for events occurring
‘out of the blue’. Typical examples are accidents, insurance claims, hospital
admissions, earthquakes, volcanic eruptions etc. So it is not surprising that
Poisson processes and their extensions (compound Poisson processes) domi-
nate in the actuarial and insurance professions, as well as geophysics, etc.

Gamma distributions.
Recall the Gamma function,

Γ(x) :=

∫ ∞
0

tx−1e−tdt, (x > 0)

(x > 0 is needed for convergence at the origin). One can check (integration
by parts, and induction) that

Γ(x+ 1) = xΓ(x) (x > 0), Γ(n+ 1) = n! (n = 0, 1, 2, · · ·);

thus Gamma provides a continuous extension to the factorial. One can show

Γ(
1

2
) =
√
π

(the proof is essentially that
∫
R e
− 1

2
x2dx =

√
2π, i.e. that the standard normal

density integrates to 1). The Gamma function is needed for Statistics, as it
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commonly occurs in the normalisation constants of the standard densities.
The Gamma distribution Γ(ν, λ) with parameters ν, λ > 0 is defined to

have density

f(x) =
λν

Γ(ν)
.xν−1e−λx (x > 0).

This has MGF

M(t) :=

∫
etxf(x)dx =

λν

Γ(ν)
.

∫ ∞
0

etx.xν−1e−λxdx

=
λν

Γ(ν)
.

∫ ∞
0

xν−1e−(λ−t)xdx

=
λν

Γ(ν)
.

1

(λ− t)ν

∫ ∞
0

uν−1e−udu

=
( λ

λ− t

)ν
(t < λ).

Sums of exponential random variables.
LetW1,W2, . . .Wn be independent exponentially distributed random vari-

ables with parameter λ (‘W for waiting time’ – see below): Wi ∼ E(λ). Then

Sn := W1 + · · ·+Wn ∼ Γ(n, λ).

For, each Wi has moment-generating function (MGF)

M(t) := E[etWi ] =

∫ ∞
0

etxf(x)dx =

∫ ∞
0

etx.λe−λxdx

= λ.

∫ ∞
0

e−(λ−t)dx = λ/(λ− t) (t < λ).

The MGF of the sum of independent random variables is the product of the
MGFs (same for characteristic functions, CFs, and for probability generating
functions, PGFs – check). So W1+ · · ·+Wn has MGF (λ/(λ−t))n, the MGT
of Γ9, n, λ) as above:

Sn := W1 + · · ·Wn ∼ Γ(n, λ).

The Poisson Process

Definition. Let W1,W2, . . .Wn be independent exponential E(λ) random
variables, Tn := W1,+ . . .+Wn for n ≥ 1, T0 = 0, N(s) := max{n : Tn ≤ s}.
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Then N = (N(t) : t ≥ 0) (or (Nt : t ≥ 0)) is called the Poisson process (or
Poisson point process) with rate λ, Pp(λ) (or Ppp(λ)).

Interpretation: Think of the Wi as the waiting times between arrivals of
events, then Tn is the arrival time of the nth event and N(s) the number of
arrivals by time s. Then N(s) has a Poisson distribution with mean λs:

Theorem. If {N(s), s ≥ 0} is a Poisson process, then
(i) N(0) = 0;
(ii) N(t+ s)−N(s) is Poisson P (λt). In particular, N(t) ∼ P (λt);
(iii) N(t) has independent increments.
Conversely, if (i),(ii) and (iii) hold, then {N(s), s ≥ 0} is a Poisson process.

Proof. Part (i) is clear: the first lifetime is positive (they all are).
The link between the Poisson process, defined as above in terms of the

exponential distribution, and the Poisson distribution, is as follows. First,

P (Nt = 0) = P (t < X1) = e−λt.

This starts an induction, which continues (using integration by parts):

P (Nt = k) = P (Sk ≤ t < Sk+1) = P (Sk ≤ t)− P (Sk+1 ≤ t)

=

∫ t

0

λk

Γ(k)
xk−1e−λxdx−

∫ t

0

λk+1

Γ(k + 1)
xke−λxdx

=

∫ t

0

[ λk

Γ(k + 1)
.xk − λk−1

Γ(k)
.xk−1

]
d(e−λx)

=
[ λk

Γ(k + 1)
.tk − λk−1

Γ(k − 1)
.tk−1

]
e−λt −

∫ t

0

e−λx
[ λk

Γ(k)
.xk−1 − λk−1

Γ(k − 1)
.xk−2

]
dx

=
[ λk

Γ(k + 1)
.tk − λk−1

Γ(k − 1)
.tk−1

]
e−λt +

∫ t

0

e−λx
[ λk−1

Γ(k − 1)
.xk−2 − λk

Γ(k)
.xk−1

]
dx.

But the integral here is P (Nt = k − 1). So (passing from Gammas to facto-
rials)

P (Nt = k)− e−λt (λt)
k

k!
= P (Nt = k − 1)− e−λt (λt)k−1

(k − 1)!
,

completing the induction. This shows that

N(t) ∼ P (λt).
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This gives (ii) also: re-start the process at time t, which becomes the new
time-origin. The re-started process is a new Poisson process, by the lack-of-
memory property applied to the current item (lightbulb above); this gives
(ii) and (iii). Conversely, independent increments of N corresponds to the
lack-of-memory property of the lifetime law, and we know that this charac-
terises the exponential law, and so the Poisson process. //

Time-dependent rates.
The parameter λ is called the rate or intensity of the Poisson process.

Think of it as the rate at which accidents happen (or telephone calls arrive
at an exchange), or the intensity of a bombardment, etc. The above extends
to include time-dependent intensities. We say that {N(s), s ≥ 0} is a Pois-
son process with rate λ(r) if
(i) N(0) = 0,
(ii) N(t+ s)−N(s) is Poisson with mean

∫ t
s
λ(r)dr, and

(iii) N(t) has independent increments.

Limit Theory.
For independent, identically distributed (iid for short) random variables

X1, X2, · · ·, the sample mean (a statistic: a function of the data – random,
as the data is, but known, after sampling, when you have the data) is

X :=
1

n

n∑
1

Xk.

The mean, or population mean, E[X] is defined as in Measure Theory, though
we can restrict here to the discrete and density cases – a weighted average∑
xkf(xk) in the discrete case where X takes values xk with probability

f(xk), and in the density case by the continuous analogue
∫
xf(x)dx when

X has density f . Always, the sum or integral is absolutely convergent:

E[|X|] <∞;
∑
|xk|f(xk) <∞;

∫
|x|f(x)dx <∞.

One would expect that X would tend to E[X] as the sample size n increases.
This is exactly right. By Kolmogorov’s Strong Law of Large Numbers of
1933 (SLLN, or just LLN for short), convergence takes place with probability
one (almost surely, or a.s. for short):

X → E[X] (n→∞) a.s.
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For renewal theory (in particular, for the Poisson process), this gives another
LLN.

Theorem (LLN for Renewal Theory). For Xi (positive) iid with mean
µ, the renewal process N = (N(t)) satisfies

N(t)

t
→ 1

µ
(t→∞) a.s.

Proof. By definition of N(t) and Sn :=
∑n

1 Xk,

SN(t) ≤ t < SN(t)+1.

So as soon as N(t) > 0,

SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t) + 1
.
N(t) + 1

N(t)
.

As t → ∞, N(t) → ∞ a.s. So the LLN the left tends to µ a.s.; so does the
first term on the right, while the second term on the right tends to 1. This
gives

t/N(t)→ µ (t→∞) a.s.

The result follows by inverting this. //

The Conditional Mean Formula

Theorem (Conditional Mean Formula. For B any σ-field,

E[E[X|B]] = E[X].

Proof. Take C the trivial σ-field {∅,Ω}. This contains no information, so an
expectation conditioning on it is the same as an unconditional expectation.
The first form of the tower property now gives

E[E[X|B] |{∅,Ω}] = E[X|{∅,Ω}] = E[X]. //

The Conditional Variance Formula

Theorem (Conditional Variance Formula).

var(Y ) = E[var(Y |X)] + var(E[Y |X]).
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Proof. Recall varX := E[(X − EX)2]. Expanding the square,

varX = E[X2−2X.(EX)+(EX)2] = E(X2)−2(EX)(EX)+(EX)2 = E(X2)−(EX)2.

Conditional variances can be defined in the same way. Recall that E(Y |X) is
constant when X is known (= x, say), so can be taken outside an expectation
over X, EX say. Then

var(Y |X) := E(Y 2|X)− [E(Y |X)]2.

Take expectations of both sides over X:

EXvar(Y |X) = EX [E(Y 2|X)]− EX [E(Y |X)]2.

Now EX [E(Y 2|X)] = E(Y 2), by the Conditional Mean Formula, so the right
is, adding and subtracting (EY )2,

{E(Y 2)− (EY )2} − {EX [E(Y |X)]2 − (EY )2}.

The first term is varY , by above. Since E(Y |X) has EX-mean EY , the
second term is varXE(Y |X), the variance (over X) of the random variable
E[Y |X] (random because X is). Combining, the result follows. //

Interpretation.
varY = total variability in Y ,
EXvar(Y |X) = variability in Y not accounted for by knowledge of X,
varXE(Y |X) = variability in Y accounted for by knowledge of X.

In words:
variance = mean of conditional variance + variance of conditional mean,
with these interpretations. This is extremely useful in Statistics, in breaking
down uncertainty, or variability, into its contributing components. There is
a whole area of Statistics devoted to such Components of Variance.

Compound Poisson Processes
We now associate i.i.d. random variablesXi with each arrival and consider

S(t) = X1 + . . .+XN(t), S(t) = 0 if N(t) = 0.

Thus S(t) is a random sum – a sum of a random number of random variables.
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A typical application in the insurance context is a Poisson model of claim
arrivals with random claim sizes The claims arrive at the epochs of a Poisson
process with rate λ. The claims are independent (different motor accidents
are independent; so are different house-insurance claims for fire damage, bur-
glary etc.). Then the claim-total mean is the claim-number mean times the
claim-amount mean. This is a special case of Wald’s identity (below).

Theorem. (i) For N Poisson distributed with parameter λ and X1, X2, . . .
independent of each other and of N , each with distribution F with mean µ,
variance σ2 and characteristic function φ(t), the compound Poisson distribu-
tion of

Y := X1 + . . .+XN

has characteristic function ψ(u) = exp{−λ(1−φ(u))}, mean λµ and variance
λE[X2].
(ii) For N = (Nt) a compound Poisson process with rate λ and jump-
distribution F with mean µ and variance σ2, Nt has CF ψ(u) = exp{−λt(1−
φ(u))}, mean λtµ and variance λtE[X2].

Proof. (i) The characteristic function (CF) follows from

ψ(t) = E[eitY ] = E[exp{it(X1 + . . .+XN)}]
=

∑
n

E[exp{it(X1 + . . .+XN)}|N = n].P (N = n)

=
∑
n

e−λλn/n!.E[exp{it(X1 + . . .+Xn)}]

=
∑
n

e−λλn/n!.(E[exp{itX1}])n

=
∑
n

e−λλn/n!.φ(t)n

= exp{−λ(1− φ(t))}.

We give two proofs for the mean and variance, (a) by differentiating the
CF, (b) from the Conditional Mean and Conditional Variance Formulae. Re-
call that if X has CF φ,

φ(t) = E[eiXt].
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Differentiating formally (this is justified here – we quote this),

φ′(t) = E[iXeiXt] : φ′(0) = iE[X]; E[X] = −iφ′(0);

φ′′(t) = E[−X2eiXt] : φ′′(0) = −E[X2]; E[X2] = −φ′′(0).

(a) Differentiate the CF:

ψ′(t) = ψ(t).λφ′(t),

ψ′′(t) = ψ′(t).λφ′(t) + ψ(t).λφ′′(t).

By above, (φ(0) = 1 and) φ′(0) = iµ, φ′′(0) = −E[X2],

ψ′(0) = λφ′(0) = λ.iµ,

and as also ψ′(0) = iEY , this gives

E[Y ] = λµ.

Thus the mean of the random sum Y := X1 + · · ·+XN is the product of the
means of X (short for a typical Xi) and N :

E[Y ] := E[X1 + · · ·+XN ] = E[X].E[N ].

This is (a special case of) Wald’s identity (Abraham Wald (1902-1950) in
1944). Similarly,

ψ′′(0) = iλµ.iλµ+ λφ′′(0) = −λ2µ2 − λE[X2],

and also (ψ(0) = 1, ψ′(0) = iλµ and) ψ′′(0) = −E[Y 2]. So

var Y = E[Y 2]− [EY ]2 = λ2µ2 + λE[X2]− λ2µ2 = λE[X2].

(b) Given N , Y = X1 + . . . + XN has mean NEX = Nµ and variance
N var X = Nσ2. As N is Poisson with parameter λ, N has mean λ and
variance λ. So by the Conditional Mean Formula,

EY = E[E(Y |N)] = E[Nµ] = λµ.

By the Conditional Variance Formula,

var Y = E[var(Y |N)] + var E[Y |N ]

= E[Nvar X] + var([N E[X])

= E[N ].var X + var N.(EX)2

= λ[E[X2]− (E[X])2] + λ.(E[X])2

= λE[X2] = λ(σ2 + µ2).
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(ii) Apply (i): Nt has mean λt and variance λt. //
In the insurance context (below), the Poisson points represent the claim

arrivals, so the Poisson rate λ is the rate at which claims arrive; µ is the
mean claim size. So λµ has the interpretion of a claim rate – rate at which
money goes out of the company in claims.

Just as the mathematics of the Black-Scholes model (Ch. VI) is domi-
nated by Brownian motion, that of insurance is dominated by the Poisson
and compound Poisson processes. These are the basic prototypes, and all
we have time to cover in detail in this course. However, these are models, of
reality, and reality is always more complicated than any model! Box’s dictum
(George Box, British statistician, 1919-2013): All models are wrong. Some
models are useful. In more advanced work, more complicated and detailed
models are needed. So there is plenty of scope for useful applications in the
real world of any probability or statistics you know, or will learn! At the end
of the course (VII.5), we discuss briefly some generalisations. But to note for
now: the principal weakness of our assumptions here is the independence of
claims. This is reasonable under normal conditions, but not during a crisis.
Think of natural disasters such as major hurricanes, etc.

§3. Renewal theory

Renewal Processes
Suppose we use components – light-bulbs, say – whose lifetimesX1, X2, . . .

are independent, all with law F on (0,∞). The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

Sn :=
n∑
1

Xi, Nt := max{k : Sk ≤ t}.

Then N = (Nt : t ≥ 0) is called the renewal process generated by F ; it is a
counting process, counting the number of failures seen by time t. Note that

SN(t) ≤ t.

Note. For stochastic processes, notations such as Nt and N(t) are used in-
terchangeably.

Renewal processes are often used, but the only ones we need here are the

13



Poisson processes – those for which the lifetime law is exponential.

The renewal function
We saw above that

Nt/t→ 1/µ (t→∞), a.s.

If we apply the expectation operator E[.] formally, this suggests that

E[Nt]/t→ 1/µ (t→∞).

This is indeed true, but although its conclusion seems weaker than that of
the a.s. result, its proof if harder (though not as hard as that of the SLLN!).

Theorem. If the mean lifetime length µ is finite, the renewal function E[Nt]
satisfies

E[Nt]/t→ 1/µ (t→∞).

Proof. The conclusion with ≥ in place of = does indeed follow from the a.s.
result by taking expectations. This is by Fatou’s lemma, which we quote
from Measure Theory. [For proof, see e.g. a book on Measure Theory, or
my homepage, Stochastic Processes, I.5 Lecture 8.] For the ≤ part, choose
a > 0, and truncate the Xn at level a:

X̃n := min(Xn, a).

Write Ñt, µ̃ for the ‘tilde’ analogues of Nt, µ. By Wald’s identity,

E[X̃1 + · · ·+ X̃Ñt
] = E[X̃].E[Ñt] = µ̃.E[Ñt].

Now Ñt ≥ Nt (because of the truncation, there will be more renewals if
anything), and S̃Ñt−1 + X̃Ñt

≤ t+ a (the ‘t’ from the first term, the ‘a’ from
the second). So

E[Nt]/t ≤ E[Ñt]/t (Nt ≤ Ñt)

= µ̃−1E[X̃1 + · · ·+ X̃Ñt
]/t (above – Wald’s identity)

= µ̃−1E[S̃Ñt
]/t ( definition of S̃n)

≤ µ̃−1 (SN(t) ≤ t, and similarly for S̃n, Ñt).

So
lim supE[Nt]/t ≤ µ̃−1.
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Now let a ↑ ∞: µ̃→ µ, giving the ≤ part and the result. //

With F the lifetime distribution function – that of each Xi – the distri-
bution function of Sn := X1 + · · · + Xn is F ∗ · · · ∗ F (n F s), the n-fold
convolution of F with itself, written F ∗n. Define

U(t) :=
∞∑
n=0

F ∗n(t).

This is called the renewal function of F . For, it gives the mean number E[Nt]
of renewals up to time t:

Theorem. The renewal function gives the mean number of renewals:

U(t) = E[Nt].

So if the mean lifetime is µ,

U(t)/t→ 1/µ (t→∞).

Proof.

E[Nt] =
∞∑
0

nP (Nt = n)

=
∑

n[P (Nt ≥ n)− P (Nt ≥ n+ 1)]

=
∑

P (Nt ≥ n),

by partial summation (or Abel’s lemma). [This is the discrete analogue of
integration by parts. See e.g. a book on Analysis, or my homepage, M3P16
Analytic Number Theory, I.3.] But {Nt ≥ n} = {Sn ≤ t}, so

E[Nt] =
∑

P (Sn ≤ t) =
∑

F ∗n(t) = U(t),

giving the first part; the second part follows from the result above. //

The renewal theorem
Renewal theory needs a distinction between two cases. If the Xi are
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integer-valued (when so are the Sn), or are supported by an arithmetic pro-
gression (AP), we are in the lattice case, otherwise in the non-lattice case.

The next result looks like a differenced form of the last one. It is due
to David Blackwell (1919-2010) in 1953. We state it for the non-lattice case
and µ <∞, but it extends to the lattice case and µ =∞ also.

Theorem (Blackwell’s renewal theorem). In the non-lattice case,

U(t+ h)− U(t)→ h/µ (t→∞) ∀h > 0.

This famous result has a number of different proofs, but we do not include
one here (my favourite is only a few lines, but needs a prerequisite beyond
our scope here).

Blackwell’s theorem has a number of variants. The one we need (which
we also quote) is due to W. L. Smith and W. Feller. Recall the Riemann
integral (defined for functions on a finite interval), and the Lebesgue integral
which generalises it (defined for functions on e.g. the line, plane etc.). We
need a new concept.

Definition. Divide the line into intervals In,h := (nh, (n+1)h]. For a function
z on R and x ∈ In,h, write

zh := sup{z(y) : y ∈ In,h}, zh := inf{z(y) : y ∈ In,h}.

Call z directly Riemann integrable (dRi) if
∫
zh :=

∫∞
−∞ zh(x)dx is finite for

some (equivalently, for all) h > 0, and similarly for
∫
zh, and∫

zh −
∫
zh → 0 (h→ 0).

This is the same as Riemann integrability if z is supported on some finite
interval, but for z of unbounded support is stronger than Lebesgue integra-
bility: z is dRi iff it is Lebesgue integrable, and both

∫
zh and

∫
zh have a

common limit
∫
z as h → 0. Condition dRI will hold whenever we need it.

We quote that dRi needs z bounded and a.e. continuous (w.r.t. Lebesgue
measure), and that this plus z of bounded support implies dRi. Also, z non-
increasing and Lebesgue integrable imples dRi.

The renewal equation for F and z (both known) is the integral equation

Z(t) = z(t) +

∫ t

0

Z(t− u)dF (u) (t ≥ 0) : Z = z + F ∗ Z. (RE)
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Here F (for us, the lifetime distribution above) and z are given, and (RE) is
to be solved for Z.

Theorem (Key Renewal Theorem). If z in (RE) is dRi, then for U the
renewal function of F as above,

limt→∞Z(t) = limt→∞U ∗ z(t) =
1

µ

∫ ∞
0

z(x)dx.

The proof of the Key Renewal Theorem from Blackwell’s Renewal The-
orem is not long or hard, but as it is Analysis rather than probability or
insurance mathematics, we omit it. For a proof, see e.g. [RSST, 6.1.4 p216-
219.

§4. The Ruin Problem.

Consider the cash flow of an insurance company. The premium income
comes in from the policy holders at constant rate, c say (to a first approx-
imation: the company hopes to attract more policy holders, and premium
rates will typically vary on renewal – but are constant during the lifetime of
the policy). So income over time t is ct. If the company has initial capital u,
its capital at time t is thus u+ ct. Meanwhile, claims occur. We model these
as occurring at the instants of a Poisson process of rate λ, the claims being
independent and identically distributed (iid) with claim distribution F , with
CF φ, mean µ and variance σ2. So the number of claims over the interval
[0, t] is N(t), which is Poisson distributed with parameter λt: N(t) ∼ P (λt).
So by the Theorem of VII.2 above, the total claim has mean λµt. Thus cash
comes in at rate c, but goes out at rate λµ. This simple argument suggests
– what is indeed true – that a necessary condition for the company to avoid
bankruptcy is

c > λµ :

money should come in faster than it goes out. The proof is by the Strong
Law of Large Numbers (LLN, as above). In the critical case c = λµ the
company is ‘balanced on a knife-edge’, and will soon go bankrupt.

The company thus must have c > λµ, so we assume this from now on.
But, any insurance company has only finite funds; it may face arbitrarily
severe runs of bad luck; combining these, bankruptcy is always a possibility.
(Indeed, this is true for all companies, not just insurance companies! This
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is why bankruptcy needs to be recognised as a possibility, and governed by
bankruptcy law. This varies from time to time and from country to country
– a very interesting and important subject, but not one we can pursue here.)

Clearly the company’s best defence against bankruptcy is to have a large
cash reserve u, to act as a buffer, or ‘insurance policy’, against such runs of
bad luck. Clearly the probability of ruin – ruin probability – decreases with
u. How fast? The classical ruin problem is to investigate this question, to
which we return below.
Note. We may if we wish take c = 1 for convenience. This (slightly) simpli-
fies the formulae. It amounts to changing from real time to operational or
business time – looking at the situation in the time-scale most natural to it.
Recall that there are no natural units of time or space (except the Planck
scale, at subatomic level, for those with a background in Physics!): time is
measured in seconds, minutes, hours, days (60 s to the m, 60 m to the h, 24
h to the day – pre-decimal), and length in metres (metric system – mm, cm,
m, km) or inches/feet/yards/miles (Imperial measure) – neither is natural,
both are conventional.

The Net Profit Condition (NPC)
With c the premium rate, Xi the claim sizes and Wi the inter-claim waiting
times, write

Zi := Xi − cWi.

Then
E[Zi] := E[Xi]− cE[Wi] = µ− c/λ.

The first term on the right measures money out (of the company), the second
measures money in. As we have seen, to avoid bankruptcy we need (‘more
in than out’)

E[Zi] := E[Xi]− cE[Wi] = µ− c/λ < 0 : c > µλ. (NPC)

This is called the net profit condition (NPC). For as we have seen, λµ is the
claim rate (rate at which cash goes out to claims); c is the premium rate
(rate at which cash comes in, through premiums); we need (NPC) – ‘more
in than out’ for survival.

Safety loading and premium calculation
The first duty of any company is to stay solvent – to avoid bankruptcy.
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To do this, an insurance company has to have its premium rate c > µλ so as
to satisfy (NPC).

But, like any other business, the insurance business is competitive. If
premiums are too low, the firm goes bankrupt (above) because its premium
income fails to meet its outgoings on claims. But if premiums are too high,
the firm will not be competitive with other firms; over time, it will lose
market share to them, and will eventually go bankrupt (or otherwise go out
of business – e.g., be taken over) as premium income declines to be too small
to meet overheads. So the firm needs to take a policy decision as to how
much to charge in premiums. This is measured by the safety loading (SL),
ρ, defined by

c = (1 + ρ)
E[Xi]

E[Wi]
= (1 + ρ)λµ : ρ :=

c− λµ
λµ

. (SL)

Thus ρ > 0 in (SL) is equivalent to (NPC).

Lundberg’s inequality
Before, we used the characteristic function (CF), defined for a random

variable X by φ(t) := E[eitX ], for t real. The reason for using complex
numbers here – for the i :=

√
−1 – is to ensure that the CF always exists. It

does, because

|φ(t)| = |E[eitX ]| ≤ E[|eitX |] = E[1] = 1.

(Recall Euler’s formula: for θ real, eiθ = cos θ+isin θ, so |eiθ| =
√
cos2θ + sin2θ =

1. Recall also that expectation is integration (w.r.t. a probability distribu-
tion), so ‘mod of integral ≤ integral of mod’.) But we now find it convenient
to use real numbers, and switch to the moment-generating function (MGF),

M(s) := E[esX ].

This is certainly defined for s = 0: M(0) = E[e0] = E[1] = 1. But it may
not be defined (finite) for all (or even any) s 6= 0. (Example: the exponential
distribution E(λ) with parameter λ has MGF λ/(λ − s), but this is only
finite for s < λ.) We now assume the small claim condition (SCC),

M(s) := E[esX1 ] <∞ ∀s ∈ (−s0, s0), for some s0 > 0. (SCC)

This implies that the tail of X1 decays exponentially. For (Markov’s Inequal-
ity): for s ∈ (0, s0) and x > 0,

M(s) = E[esX1 ] ≥ E[esX1 ;X1 > x] ≥ esxE[1;X1 > x] = esxP (X1 > x) :
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P (X1 > x) ≤ e−sxM(s) ∀x > 0.

Differentiating the MGF twice (and writing X for X1 for convenience):

M(s) = E[esX ], M ′(s) = E[XesX ], M ′′(s) = E[X2esX ] ≥ 0.

Also, the MGF M(s) is smooth (we can differentiate it as often as we like,
where it is defined). So its graph has a tangent, and as M ′′ ≥ 0, the tangent
is increasing – the graph bends upwards. Such functions are called convex.
Also, as M(0) = 1, the graph goes through 1 at the origin. Now smooth
convex functions can intersect any line at most twice (e.g., a parabola may
not cut a line, or can cut it once (double point of contact), or twice, but not
more).

The crucial assumption is that M(s) cuts the line y = 1 twice, once (nec-
essarily) at the origin and once at a positive point r.

Definition.
The Lundberg coefficient (or adjustment coefficient) r, which we assume

to exist in what follows, is the point r > 0 (we assume r exists; it is then
unique) such that r = s satisfies

MZ1(s) := E[exp{s(X1 − cW1)}] = 1. (LC)

The right is (writing X,W for X1,W1) MX(s).MW (−cs). Now as W ∼ E(λ),
W has Laplace-Stieltjes transform (LST) E[e−tW ] = MW (−t) =

∫∞
0
e−tx.λe−λxdx =

λ/(λ+ t). So the defining property of the Lundberg (adjustment) coefficient
is (writing M for MX for short)

M(r).
λ

λ+ cr
= 1 : M(r) =

λ+ cr

λ
= 1 +

cr

λ
. (LC ′)

Theorem (Lundberg’s Inequality). Assuming that the Small-Claims
Condition (SCC) holds and that the Lundberg coefficient r in (LC) exists,
the ruin probability ψ(u) with initial capital u and over all time satisfies

ψ(u) ≤ e−ru.

Proof. Write
Sn := Z1 + · · ·+ Zn, Zi := Xi − cWi.

Then S = (Sn) is a random walk, with step-lengths Zi := Xi − cWi. As
the ruin probability increases with time, the ruin probability ψ(u) is the
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increasing limit of the ruin probability ψn(u) with just the first n claims Xi

and waiting times Wi involved:

ψn(u) = P (max1≤k≤nSk > u) = P (Sk > u for some k ∈ {1, · · · , n} ).

We prove that
ψn(u) ≤ e−ru ∀n ∈ N, u > 0. (∗)

The result follows from this by letting n → ∞; we prove (∗) by induction
(on n).

The induction starts, by Markov’s Inequality:

ψ1(u) ≤ e−ruMZ1(r) = e−ru,

by definition of the Lundberg coefficient: MZ1(r) = 1.
Assume that (∗) holds for n, and write F for FZ1 , the distribution function

of Z1. Then

ψn+1(u) = P (max{Sk : 1 ≤ k ≤ n+ 1} > u)

= P (Z1 > u) + P (Z1 ≤ u,max{Z1 − (Sk − Z1) : 2 ≤ k ≤ n+ 1} > u)

= p1 + p2,

say.
We now make our first use of the renewal argument, which will allow us

to reduce the proof of our main results to an application of the Key Renewal
Theorem. The idea is to condition on the value of the first claim Z1, and let
the process ‘renew itself’ with the first claim, starting afresh thereafter. So,
starting the random walk after Z1 = x in the p2-term above and conditioning
on the value x of Z1,

p2 =

∫
(−∞,u]

P (max1≤k≤n(x+ Sk) > u)dF (x).

In full, this is a use of the Conditional Mean Formula. For an event A, the
random variable IA (its indicator function: 1 if ω ∈ A, 0 if not) has mean

E[IA] = P (A).

Then conditioning on information B (size of first claim here),

P (A) = E[IA] = E[E[IA|B]].
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Now

p1 =

∫
(u,∞)

dF (x) ≤
∫
(u,∞)

er(x−u)dF (x),

as r > 0, while

p2 =

∫
(−∞,u]

P (max1≤k≤n(x+ Sn) > u)dF (x)

=

∫
(−∞,u]

ψn(u− x)dF (x)

≤
∫
(−∞,u]

er(x−u)dF (x) (by the induction hypothesis).

Combining the domains (−∞, u] and (u,∞) of integration here,

p1 + p2 ≤
∫ ∞
−∞

er(x−u)dF (x) = e−ru
∫
erxdF (x) = e−ruM(r) = e−ru,

as M(r) = 1 by definition of the Lundberg coefficient r, completing the in-
duction. //

Example: Exponential claims.
Recall the exponential distribution E(λ) with parameter λ, which has

mean 1/λ and MGF λ/(λ − s). With the arrival process Poisson with rate
λ as above (so the inter-claim waiting times are E(λ)), consider now the
simplest case, when the claim sizes are also exponential, E(γ) say. So Wi has
MGF γ/(γ − s), cWi has MGF γ/(γ − cs), and Zi = Xi − cWi has MGF

MZ(s) = MX(s)McW (−s) =
γ

γ − s
.

λ

λ+ cs
.

As usual, we assume the Net-Profit Condition (NPC):

E[X]/E[W ] = λ/γ < c.

Then the Lundberg coefficient r is the (unique, positive) root of

MZ(r) =
γ

γ − r
.

λ

λ+ cr
= 1.

This is a quadratic,

Q(r) := −[(cr + λ)(−r + γ)− λγ] = cr2 + (λ− cγ)r = r(cr + λ− cγ) = 0,
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with positive root

r = γ − λ

c
> 0,

by (NPC). In terms of the safety loading ρ,

c =
E[X]

E[W ]
(1 + ρ) =

λ

γ
(1 + ρ).

So in terms of the safety loading ρ rather than the premium rate c,

r = γ
ρ

(1 + ρ)
,

and the Lundberg inequality is

ψ(u) ≤ exp{−uγρ/(1 + ρ)}.

This is nearly exact: in this case, there is a constant C with

ψ(u) = C exp{−uγρ/(1 + ρ)}.

Note. This example is unusually simple: in general, there is no closed form
for r, and we have to find it by numerical methods. This is typically the case
for solutions of transcendental (rather than algebraic) equations.

Cumulant-generating function (CGF)
Definition. The cumulant-generating function (CGF) κ(s) of a distribution
is the logarithm of the MGF M :

κ(s) := logM(s).

Thus the Lundberg (adjustment) coefficient may also be defined by

κZ1(s) = logMZ1(s) := logE[exp{s(X1 − cW1)}] = 0. (LC ′)

Like the MGF, the CGF is also convex. For,

κ = logM, κ′ = M ′/M, κ′′ = [MM ′′ − (M ′)2]/M2.

By the Cauchy-Schwarz inequality,

(M ′)2 = (E[XesX ])2 ≤MM ′′ = E[esX ].E[X2esX ]
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(E[.] is an integral, over the probability space Ω w.r.t. the probability mea-
sure P , or dP (ω); here we apply C-S for the measure esX(ω)dP (ω)). So
κ′′ ≥ 0. So κ is convex. The graph of κ(s) has two roots, s = 0 and s = r,
the Lundberg (adjustment) coefficient.
The ruin problem and the renewal equation

With initial capital u, the company’s capital at time t is

Ct = u+ ct−
Nt∑
1

Xi.

The probability of (ultimate) ruin and of survival are

ψ(u) = P (inf0<t<∞Ct < 0|C0 = u),

ψ(u) := 1− ψ(u) = P (Ct ≥ 0 ∀t|C0 = u).

The key to the relevance of renewal methods here – the renewal argument
we used before – is that the capital process renews itself at the time of the
first claim: if this is at time W1 = s and of size X1 = x, it begins again,
with initial capital u+ cs−x (of course if this is negative, the company goes
bankrupt when it receives its first claim!). We can condition (as above) on
the time W1 (density λe−λs) and size X1 (distribution F ) of first claim:

ψ(u) =

∫ ∞
0

λe−λsds

∫ u+cs

0

dF (x)ψ(u+ cs− x).

Change variable from s to t := u + cs: the limits 0 < x < u + cs, s > 0
become 0 < x < t, t > u:

ψ(u)e−λu/c =
λ

c

∫ ∞
u

λe−λt/cdt

∫ t

0

dF (x)ψ(t− x).

This shows that ψ is differentiable (as the exponential and the integral are).
Differentiating w.r.t. u:

e−λu/c(ψ
′
(u)− λ

c
ψ(u)) = −λ

c
e−λu/c

∫ u

0

ψ(u− x)dF (x) :

ψ
′
(u) =

λ

c
ψ(u)− λ

c

∫ u

0

ψ(u− x)dF (x).

24



Integrate over u ∈ [0, t], and write

h(y) :=

∫ t−y

0

ψ(u)du (0 ≤ y ≤ t), 0 (y > t).

The first term on the right integrates to h(0), so

ψ(t)− ψ(0)− λ

c
h(0) = −λ

c

∫ t

0

du

∫ u

0

ψ(u− x)dF (x)

= −λ
c

∫ t

0

duh(x)dF (x) (def. of h(.) on [0, t])

= −λ
c

∫ ∞
0

duh(x)dF (x) (h(.) = 0 on [t,∞])

=
λ

c

∫ ∞
0

duh(x)d(1− F )(x).

Integrating by parts, the integrated term on the right cancels with the last
term on the left:

ψ(t)− ψ(0) = −λ
c

∫ ∞
0

h′(x)(1− F (x))dx :

ψ(t) = ψ(0) +
λ

c

∫ ∞
0

ψ(t− x)(1− F (x))dx.

This integral equation for ψ translates into one for ψ itself:

ψ(u) =
λ

c

(∫ ∞
u

(1− F (x))dx+

∫ ∞
0

ψ(u− x)(1− F (x))dx
)
. (∗)

Note that F has mean

µ :=

∫ ∞
0

xdF (x) = −
∫ ∞
0

xd(1− F )(x).

Integrating by parts (rather as above), the integrated term vanishes, giving

µ =

∫ ∞
0

(1− F (x))dx.

Thus (1−F (x))/µ is a probability density on (0,∞), and the integral equation
(∗) above is of renewal-equation type. This is crucial: it reduces the proof of
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the main result (Cramér’s estimate of ruin, below) to an application of the
Key Renewal Theorem.

Multiplying both sides of (∗) by eru gives

ψ(u)eru =
λ

c
eru
∫ ∞
u

(1− F (x))dx+

∫ ∞
0

ψ(u− x)er(u−x).
[λ
c

(1− F (x)erx
]
dx.

(∗∗)
Cramér’s estimate of ruin

Theorem (Cramér’s estimate of ruin).
For the Cramér-Lundberg model, under the Net Profit Condition (NPC)

and the Lundberg condition (LC), with r the Lundberg coefficient and ψ(u)
the probability of ruin with initial capital u,

eruψ(u)→ C : ψ(u) ∼ Ce−ru (u→∞),

where the constant C is given by

C =
c− λµ

cr
∫∞
0
xerx(1− F (x))dx

.

Proof. From the existence of the Lundberg coefficient r > 0 in (LC),

M(r) :=

∫ ∞
0

erxdF (x) = −
∫ ∞
0

erxd(1− F )(x) = 1 +
cr

λ
.

Integrating by parts (again as above!), the integrated term is 1, giving∫ ∞
0

(1− F (x))erxdx =
c

λ
:

λ

c
(1− F (x))erx

is a probability density on (0,∞), which shows that (∗∗) is an integral equa-
tion of renewal type (RE). So by the Key Renewal Theorem, its solution
ψ(u)eru has a limit, C say, as u→∞, giving the first (and more important)
part.

To identify the limit C: from the Key Renewal Theorem, C is the integral
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of the first (z-) term on the right, divided by the mean of the probability
distribution in the convolution. The integral term is λ/c times∫ ∞
0

erudu

∫ ∞
u

(1− F (x))dx =
1

r

∫ ∞
0

[

∫ ∞
u

(1− F (x))dx]d(eru)

=
1

r
[eru

∫ ∞
u

(1− F (x))dx]∞0 +
1

r

∫ ∞
0

eru(1− F (u))du

= −µ
r

+
c

rλ
=
c− λµ
cr

,

by the calculation above. So, in the notation of the Key Renewal Theorem,∫ ∞
0

z(x)dx =
λ

c
.
c− λµ
cr

.

The mean of this density (the ‘µ’ term in the Key Renewal Theorem) is

λ

c
.

∫ ∞
0

xerx(1− F (x))dx.

So C is their ratio:

C =
c− λµ

cr
∫∞
0
xerx(1− F (x))dx

. //

Note. 1. The argument above draws on several sources: [Mik 4.2.2, 166-171],
[AA, 4.5a p90], [A, IV.2 Ex. 2.3; IV.4, 5], [RSST, 5.3.2, 5.4.2].
2. In addition to the Key Renewal Theorem, the crux in the above is the
change of measure

F = F (dx) 7→ λ

c
(1− F (x))erxdx.

This is also called exponential tilting and the Esscher transform, after the
Swedish actuary Fredrik Esscher in 1932. (It also occurs in large deviations,
important in many areas of probability, statistics and statistical mechanics.)
This change-of-measure technique is of course also related to that in Gir-
sanov’s theorem in mathematical finance (Ch. VI).

Filip Lundberg
Filip Lundberg (1876-1965) was a Swedish actuary and pioneer of the
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theory of collective risk. His work in actuarial mathematics goes back to
1903, long before probability theory as we know it existed. He is credited
by Cramér (1969, 1976) as initiating the theory of collective risk, in a series
of papers in the late 1920s. Here, as in the work of Cramér below, one sees
the modern formulation: the income stream of an insurance company, from
premiums, is deterministic and linear; the outgoings, to meet claims, form
a compound Poisson process, from the claims process (a Poisson process, of
rate or intensity λ say) and the claim-size distribution (F say). Given the
company’s initial capital, u say, one studies the dependence of the probability
of ruin (clearly positive) as a function of u and the current time, obtaining
the familiar exponential estimate.

Lundberg may be regarded as having introduced the Poisson process, the
foundation stone of actuarial mathematics. But one must bear in mind that
the very term stochastic process is anachronistic here: the term was coined
by Khinchin in the 1920s, and the necessary mathematical underpinning had
to wait for Kolmogorov’s Grundbegriffe of 1933.

Cramér (1969) draws attention to the implications of Lundberg’s work
for reinsurance. This field is of ever-growing importance, as the financial
world becomes larger and more complicated, as it poses in modern form Ju-
venal’s famous question (VII.1): quis custodiet ipsos custodes? Who guards
the guards? Who insures the insurers? Who reinsures the reinsurers?

Harald Cramér
Harald Cramér (1893-1985) was a Swedish mathematician and probabilist

of great distinction. In his personal recollections (Cramér, Half a century
with probability, Annals of Prob.(1976)) he writes, of the period after he
obtained his PhD (in 1917, in analytic number theory, under Marcel Riesz):
“For a young Swedish mathematician of my generation, who wanted to find
a job that would enable him to support a family, it was quite natural to turn
to insurance. It was a tradition for Swedish insurance companies to employ
highly qualified mathematicians as actuaries ...” (he continues to describe
how his actuarial and insurance work led him into probability theory). It
is by no means unusual for people to be drawn into a field for such reasons
(Doob in probability in the US, and Bartlett and Cox in statistics in the
UK, come to mind). In 1929 Cramér became the first holder of the chair
in Actuarial Mathematics and Mathematical Statistics at the University of
Stockholm – an important event in the development of actuarial mathemat-
ics in Scandinavia, and indeed more generally.
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The Cramér estimate of ruin (above) of 1930 is perhaps Cramér’s most
prominent contribution to actuarial and insurance mathematics, and with it
the now-standard Cramér-Lundberg model in insurance, as we will now call
the model above.

§5. Complements

More general processes
The classical Cramér-Lundberg model above is the basic prototype in in-

surance mathematics, but it is by no means the only one, and is not general
enough for all purposes.
1. Non-homogeneous Poisson processes.

These we have met before. Here the Poisson rate λ(t) may vary with time.
Matters become more complicated, but the theory may be carried through
much as before.
2. Cox processes.

These were introduced by D. R. (Sir David) Cox (1924 - ) in 1955, under
the name doubly stochastic Poisson process or mixed Poisson process. Here
the Poisson rate is random. This makes things more flexible and realistic, as
well as more complicated.

Perhaps the most important case of a Cox process is where the rate has
a Gamma distribution, when it is called a Pólya process. Recall that the
Gamma distribution is the prototype of an error (or noise) distribution on
the positive half-line, just as the Normal is on the line. For background here,
see Generalised Linear Models (GLMs) in regression, in statistics.
3. Lévy processes.

The compound Poisson process models a situation where we can clearly
identify the jumps. But what matters to the company is the flow of cash. For
a large company, claims of small (or even ordinary) size may be so numerous
as to be treated as ‘small change’; it is the large claims that predominate, as
these can be lethal. Allowing for this, it makes sense to generalise to Lévy
processes (named after the great French probabilist Paul Lévy (1886 - 1971)
for his pioneering work on them in the 1930s). These are stochastic processes
with stationary independent increments. By the Lévy-Khintchine formula
and the Lévy-Itô decomposition, they may be decomposed into three inde-
pendent components: (i) a linear deterministic drift (trivial); (ii) a Brownian-
motion component; (iii) a sum of jumps (any of these may be absent). The
jumps case splits, into (a) only finitely many jumps in finite time (finite ac-
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tivitiy, FA – the compound Poisson case above); (b) infinitely many jumps
in finite time (infinite activity, IA). The theory can be extended to the Lévy
case; for details, see e.g. [Kyp].
4. Gerber-Shiu theory.

This theory (Hans Gerber and Elias Shiu, 1997 and 1998) looks at the
financial situation of a company at ruin or bankruptcy. This is an important
matter!:
(i) The size of the cash reserve just before failure governs how much in the
pound (dollar, euro, ...) the creditors will receive.
(ii) The overshoot – amount of the deficit which triggers failure – will be
used by the liquidators, creditors, regulators etc. to determine whether or
to what extent the company was negligent. This has important legal im-
plications. Never forget that it is illegal under the Companies Act to trade
while insolvent – or to enter into a transaction without the capacity to carry
it through. A transaction needs two counter-parties, each willing to trade,
and each able to do so. Each has to trust the other here, and inability to
complete a deal is a breach of trust here. See e.g. [Kyp, Ch. 10].

Related problems and processes
Fluctuation theory.

The ruin problem above involves the infimum (minimum) over time of
the cash balance of the company, or equivalently the supremum (maximum)
of the liability. Thus for a process X := {Xt}, the supremum and infimum
processes are relevant:

X(t) := sup{Xs : s ∈ [0, t]}, X(t) := inf{Xs : s ∈ [0, t]}.

Related to these is the reflected process, X −X:

(X −X)(t) := X(t)−X(t) ≥ 0.

The study of these and related functionals is called fluctuation theory – cf.
the title of Kyprianou’s book [Kyp], where ruin problems are indeed studied.
Queues and dams.

Other areas of Applied Probability involve such functionals and processes,
which have to be non-negative, for example, storage processes [Kyp Ch. 4]
(one cannot store a negative quantity of a commodity, etc.). The classical
example here is a dam, whose reservoir may run dry – become empty – but
which cannot store a negative amount of water. Here the input process of
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water is often modelled by a Lévy process. Now consider a queue – for sim-
plicity, a single-server queue. The server is initially idle (say). This idle
period ends when the first customer arrives for service; the server then works
non-stop to serve him, and continues in the same way with any customers
who arrive during this busy period, and so on. The analogue of the content
of the dam (or storage model) is the workload facing the server – alterna-
tively, from the customer’s point of view, the virtual waiting time – the time
a customer arriving at time t would have to wait to begin service (a.s. no
customer does arrive at any given t – but busy facilities such as restaurants,
exhibitions etc. often post how long one would have to wait if one did).
Random walks.

The subject lurking in the background here is that of random walks –
sums Sn = X1 + · · · + Xn of iid random variables. These have an extensive
and interesting fluctuation theory, developed in the 1950s by Spitzer, Baxter,
Sparre Andersen and others.
Duality.

The link between ruin problems and queues etc. lies in duality for random
walks. In brief, this involves reversing both time and space – looking at the
steps of a random walk backwards in time and ‘upside down’ (see e.g. [Kyp,
3.2]). One can often then transfer from one of the above problem areas to
another. This is the most efficient, attractive and modern way to handle the
material. Before, results that are now handled easily by duality as above
had to be discovered at least twice, and it to be noticed that the relevant
distributions were the same. Duality enables one to proceed ‘pathwise’ – by
looking at the random quantities themselves, not just their distributions.

In the ruin problem here, the Net Profit Condition means: to avoid ruin,
‘more money in than out’. In queues, this corresponds to the stability condi-
tion: the server can handle work faster than it comes in (mean service time
less than mean inter-arrival time – without this, the server is overwhelmed
and the queue ‘blows up’). For such a stable queue, the workload (or virtual
waiting time) has a limit distribution as time increases – the queue settles
down to a steady state. The most important case is the M/G/1 queue (M :
Markov arrival process – Poisson; G: general service-time distribution; 1:
single server). Here the limiting waiting-time distribution is given by the
classical Pollaczek-Khintchine formula. This corresponds to our main result
above, the Cramér estimate of ruin. For background and details, see [Kyp,
1.3.1, 1.3.2].
Splitting times.
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The time at which the maximum over [0, t] is attained is not a stopping
time: one cannot ‘peep into the future’ to decide when to quit the gam-
bling table, etc! But, the duality results above show that such times have
special properties. If one decomposes the path over [0, t] into the pre- and
post-maximum fragments, these are independent given where and when the
maximum occurs, etc.: the path splits at the maximum, in this sense. Such
splitting-time arguments are very useful and powerful, and have been sys-
tematically exploited by David Williams and others.

Stochastic calculus for jump processes
In Ch. V we developed stochastic (Itô) calculus based on Brownian mo-

tion, and applied it in Ch. VI to mathematical finance (Black-Scholes the-
ory). It turns out that this calculus can be extended to the processes with
jumps relevant here in Ch. VII on insurance, where the jumps represent the
claims. This is technically easier (at least for the Poisson process), but ac-
tually came later. It was developed in the context of queueing theory, where
the jumps represent customers arriving (or departing). We will be brief; for
background and details, see e.g.
D. Applebaum, Lévy processes and stochastic calculus, 2nd ed., CUP, 2009
[1st ed. 2004],
P. Brémaud, Point processes and queues: martingale dynamics, Springer,
1981.

Recall that the essence of Brownian-based stochastic calculus is captured
in the simple equation

(dBt)
2 = dt.

The essence of Poisson-based stochastic calculus is similarly captured in

(dNt)
2 = dNt.

For, the change dNt in a Poisson process N = (Nt) at time t is 0 or
1, and the above expresses that these are the only roots of x2 = x, i.e.
x2 − x = x(x− 1) = 0.

The context of Lévy processes in [App] is the simplest natural one con-
taining both the Brownian and the Poisson/compound Poisson cases. But
the natural context for stochastic integration is (a lot) more general still –
that of semi-martingales. These are processes expressible as the sum of a
local martingale and a process of (locally) finite variation (FV). The theory
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here was developed by Paul-André Meyer (1934-2003) and the French (Stras-
bourg, Paris) school – the ‘general theory of processes’.

Non-life insurance: regression and covariates
House insurance

If one insures a house’s contents, one of the the principal risk factors the
insurance company will consider (and the easiest one to measure) is the risk
of burglary. This varies greatly according to the nature of the area: affluent
areas have more to attract a burglar, but tend to have better burglar alarms;
poorer areas tend to have higher crime rates, etc. If one insures a house
as a building, the principal risk factor is subsidence. This depends largely
on the geological conditions in the area (and so are indicated by the postal
code), but also on the quality of the building at the time the area was de-
veloped (which can be assessed from past claims). Risk of fire is important
in both, but harder to assess (it depends on people not leaving chip-pans on
the cooker when called to the door or the phone, etc.). These subsidiary bits
of information are called covariates; the way to use them is called regression.
The areas of statistics involved are very useful in the actuarial/insurance
profession.

Motor insurance
Motor insurance rates vary widely. Of course, the most important single

thing is the claims record of the insuring motorist – a good record is worth
money, in a no-claims bonus. But, the type of car is also relevant (sports
cars are penalised); so is the type of driver (young men are penalised), the
annual mileage, the type of use (private or for hire), etc.

Life insurance
Eventual death is certain, so life insurance is largely a matter of covariates

such as: age, sex, medical record, profession etc. The tools involved come
under Survival Analysis: hazard rates, etc. Following the introduction of the
proportional hazards model by Cox in 1972, martingale methods have been
widely used. This is a very interesting and useful area, but not one we can
pursue further here.

To give some flavour of Survival Analysis: suppose that a person survives
for time t. What is the chance that he dies by time t + dt? With T as the
lifetime, with distribution function F on (0,∞), density f and tail F (x) =
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1− F (x), this is

P (T ≤ x+ dx|T > x) = P (x < T ≤ x+ dx)/P (T > x)

= (F (x+ dx)− F (x))/(1− F (x))

∼ f(x)dx/(1− F (x))

= h(x)dx,

say, where h(x) has the interpretation of a hazard rate. So

h(x) = f(x)/(1− F (x)).

Integrating,

1− F (x) = exp{
∫ x

0

h(u)du} : F (x) = 1− exp{
∫ x

0

h(u)du}.

The simplest case is constant hazard rate, λ say, leading to the exponential
distribution E(λ), and so to the Poisson process Ppp(λ) of VII.2:

h(x) ≡ λ, F (x) = 1− e−λx, (x > 0) : F = E(λ).

Now hazard rates vary according to many factors, or covariates: age (older
people die out faster than younger ones); medical history; weight, smoking
status, occupation, marital status (married people live longer!), etc. So appli-
cants for life insurance will be asked to fill out a form detailing the covariates
the insurance company deems relevant; assessing the premium depending on
these covariates involves regression, as with the non-life examples above.

Reinsurance
Reinsurers play a major role, in the modern economy, beyond insuring

insurers. Reinsurance companies act as de facto regulators: they monitor in-
surers and put a price on their heads. The government need have no say, as
‘it’s money that talks here’. A good reinsurance premium implies confidence,
and makes it easier for the primary insurer to raise capital on the open mar-
ket. Insurers hold, to cover losses, a mix of cash reserve, investment reserve
and reinsurance. (It used to be that the reinsurance pot was biggest, but
that is changing as investment becomes more affordable.) The basic fact is
that the balance of the three sources of capital is important, and precarious:
the reinsurance company watches the cash position of the client like a hawk.
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Lender of last resort
Companies may fail, and disappear (leaving debts behind them, as well

as lost jobs, etc.). But countries cannot disappear (even though sovereign
states have on occasion defaulted on debt, split up, etc.). The ultimate un-
derpinning (in so far as there is one) here is provided by the state, in the
form of the central bank – the Bank of England (BoE) in the UK, the Fed-
eral Reserve Bank (Fed) in the USA, the European Central Bank (ECB) in
the EU, and indeed the World Bank at UN level. The phrase ‘lender of last
resort’ is used to convey this.
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Postscript to Ch. VII, Insurance Mathematics

As noted in VII.1, the actuarial profession regulates itself carefully. The
Institute of Actuaries sets professional exams, which intending actuaries must
pass in order to become qualified. In order to earn exemption by passing a
course at university, the university course (particularly its syllabus) must be
accredited (validated) by the Institute. (The situation is similar in the ac-
countancy profession.)

The two main centres for actuarial work in the UK are London and Ed-
inburgh. In London, the City University was an early centre, followed later
by the London School of Economics (LSE). The LSE’s Risk and Stochastics
MSc has now become a major producer of actuaries. In Edinburgh, a similar
role has long been played by Heriot-Watt University.

As a glance at the skyline in the City of London reveals, London is a
major world financial centre. The financial services industry is one of the
UK’s major industries (thirty years ago manufacturing industry predomi-
nated – recall that the UK pioneered the Industrial Revolution – but this
is no longer so). Most of the leading UK Mathematics Departments have
MSc programmes in Financial Mathematics. I think it is fair to say that
UK academia provides well for the needs of the financial services industry.
I think it is also fair to say that it provides less well for the needs of the
actuarial profession and the insurance industry. This is a great pity (recall
from VII.1 the UK’s historic leading role here).

I am very pleased that Insurance Mathematics is included in the syllabus
for this course. I would urge anyone taking this course who does not already
have a clear career path mapped out ahead of them to consider actuarial
work (which I would probably have gone into myself had I not been sucked
into academia). The work is very useful, and very interesting.

It is worth noting that the boundary between the mathematics of finance
(Ch. I-VI) and insurance (Ch. VII) has become quite blurred in recent years.
The two areas are no longer separate, as they once were, and the trend to-
wards further interaction will no doubt continue. So it does not have to be
an ‘either or’ choice for you!

NHB
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