m3a22soln9.tex

SOLUTIONS 9. 18.12.2015

Q1 Brownian covariance. For $s \leq t$,

$$
B_{t}=B_{s}+\left(B_{t}-B_{s}\right), \quad B_{s} B_{t}=B_{s}^{2}+B_{s}\left(B_{t}-B_{s}\right) .
$$

Take expectations: on the left we get $\operatorname{cov}\left(B_{s}, B_{t}\right)$. The first term on the right is, as $E\left[B_{s}\right]=0, \operatorname{var}\left(B_{s}\right)=s$. As BM has independent increments, $B_{t}-B_{s}$ is independent of B_{s}, so

$$
E\left[B_{s}\left(B_{t}-B_{s}\right)\right]=E\left[B_{s}\right] \cdot E\left[B_{t}-B_{s}\right]=0.0=0 .
$$

Combining, $\operatorname{cov}\left(B_{s}, B_{t}\right)=s$ for $s \leq t$. Similarly, for $t \leq s$ we get t. Combining, $\operatorname{cov}\left(B_{s}, B_{t}\right)=\min (s, t)$.

Q2 Brownian scaling. With $B_{c}(t):=B\left(c^{2} t\right) / c$,

$$
\operatorname{cov}\left(B_{c}(s), B_{c}(t)\right)=E\left[B\left(c^{2} s\right) / c . B\left(c^{2} t\right) / c\right]=c^{-2} \min \left(c^{2} s, c^{2} t\right)=\min (s, t)=\operatorname{cov}\left(B_{s}, B_{t}\right) .
$$

So B_{c} has the same mean 0 and covariance $\min (s, t)$ as BM . It is also (from its definition) continuous, Gaussian, stationary independent increments etc. So it has all the defining properties of BM. So it is BM.

So BM is a fractal: it reproduces itself if time and space are scaled together in this way. This is why if we "zoom in and blow up" a Brownian path, it still looks like a Brownian path - however often we do this. By contrast, if we zoom in and blow up a smooth function, it starts to look straight (because it has a tangent).

Specialising to the zero set Z of BM B, this too is a fractal because B is.
Q3 Time-inversion. Like BM, X is continuous (where it is defined - away from 0) and Gaussian. Its covariance is

$$
\begin{aligned}
\operatorname{cov}\left(X_{s}, X_{t}\right) & =\operatorname{cov}(s B(1 / s), t B(1 / t))=\operatorname{stcov}(B(1 / s), B(1 / t)) \\
= & s t \min (1 / s, 1 / t)=\min (t, s)=\min (s, t) .
\end{aligned}
$$

So as X has the same covariance as BM, X is BM. But BM is continuous everywhere, not just away from 0 . So X is continuous at 0 too, and has $X(0)=0$ as BM does. So
$X_{t} \rightarrow 0 \quad(t \rightarrow 0): \quad t B(1 / t) \rightarrow 0 \quad(t \rightarrow 0): \quad B(t) / t \rightarrow 0 \quad(t \rightarrow \infty)$.

Q4. We calculate $\int B(u) d B(u)$. We start by approximating the integrand by a sequence of simple functions.

$$
X_{n}(u)=\left\{\begin{array}{lll}
B(0)=0 & \text { if } & 0 \leq u \leq t / n \\
B(t / n) & \text { if } & t / n<u \leq 2 t / n \\
\vdots & \vdots & \\
B((n-1) t / n) & \text { if } & (n-1) t / n<u \leq t
\end{array}\right.
$$

By definition,

$$
\int_{0}^{t} B(u) d B(u)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} B(k t / n)(B((k+1) t / n)-B(k t / n)) .
$$

Replacing $B(k t / n)$ by $\left.\frac{1}{2}(B((k+1) t / n)+B(k t / n))-\frac{1}{2}(B((k+1) t / n)-B k t / n)\right)$, the RHS is

$$
\begin{aligned}
& \sum \frac{1}{2}(B((k+1) t / n)+B(k t / n)) \cdot(B((k+1) t / n)-B(k t / n)) \\
- & \sum \frac{1}{2}(B((k+1) t / n)-B(k t / n)) \cdot(B((k+1) t / n)-B(k t / n)) .
\end{aligned}
$$

The first sum is $\sum \frac{1}{2}\left(B((k+1) t / n)^{2}-B(k t / n)^{2}\right)$, which telescopes (as a sum of differences) to $\frac{1}{2} B(t)^{2}(B(0)=0)$. The second sum is $\left.\frac{1}{2} \sum(B(k+1) t / n)-B(k t / n)\right)^{2}$, an approximation to the quadratic variation of B on $[0, t]$, which tends to $\frac{1}{2} t$ by Lévy's theorem on the QV. Combining,

$$
\int_{0}^{t} B(u) d B(u)=\frac{1}{2} B(t)^{2}-\frac{1}{2} t .
$$

Note the contrast with ordinary (Newton-Leibniz) calculus! Itô calculus requires the second term on the right - the Itô correction term - which arises from the quadratic variation of B.

