m3a22soln4.tex

SOLUTIONS 4. 13.11.2015

Q1. Since f is clearly non-negative, to show that f is a (probability density) function (in two dimensions), it suffices to show that f integrates to 1 :

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1, \quad \text { or } \quad \iint f=1
$$

Write

$$
f_{1}(x):=\int_{-\infty}^{\infty} f(x, y) d y, \quad f_{2}(y):=\int_{-\infty}^{\infty} f(x, y) d x
$$

Then to show $\iint f=1$, we need to show $\int_{-\infty}^{\infty} f_{1}(x) d x=1\left(\right.$ or $\int_{-\infty}^{\infty} f_{2}(y) d y=$ 1). Then f_{1}, f_{2} are densities, in one dimension. If $f(x, y)=f_{X, Y}(x, y)$ is the joint density of two random variables X, Y, then $f_{1}(x)$ is the density $f_{X}(x)$ of $X, f_{2}(y)$ the density $f_{Y}(y)$ of $Y\left(f_{1}, f_{2}\right.$, or f_{X}, f_{Y}, are called the marginal densities of the joint density f, or $\left.f_{X, Y}\right)$.

To perform the integrations, we have to complete the square. We have the algebraic identity

$$
\left(1-\rho^{2}\right) Q \equiv\left[\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)-\rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\right]^{2}+\left(1-\rho^{2}\right)\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}
$$

(reducing the number of occurrences of y to 1 , as we intend to integrate out y first). Then (taking the terms free of y out through the y-integral)

$$
\begin{equation*}
f_{1}(x)=\frac{\exp \left(-\frac{1}{2}\left(x-\mu_{1}\right)^{2} / \sigma_{1}^{2}\right)}{\sigma_{1} \sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sigma_{2} \sqrt{2 \pi} \sqrt{1-\rho^{2}}} \exp \left(\frac{-\frac{1}{2}\left(y-c_{x}\right)^{2}}{\sigma_{2}^{2}\left(1-\rho^{2}\right)}\right) d y \tag{*}
\end{equation*}
$$

where

$$
c_{x}:=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right) .
$$

The integral is 1 ('normal density'). So

$$
f_{1}(x)=\frac{\exp \left(-\frac{1}{2}\left(x-\mu_{1}\right)^{2} / \sigma_{1}^{2}\right)}{\sigma_{1} \sqrt{2 \pi}}
$$

which integrates to 1 ('normal density'), proving
Fact 1. $f(x, y)$ is a joint density function (two-dimensional), with marginal density functions $f_{1}(x), f_{2}(y)$ (one-dimensional). So we can write

$$
f(x, y)=f_{X, Y}(x, y), \quad f_{1}(x)=f_{X}(x), \quad f_{2}(y)=f_{Y}(y)
$$

Fact 2. X, Y are normal: X is $N\left(\mu_{1}, \sigma_{1}^{2}\right), Y$ is $N\left(\mu_{2}, \sigma_{2}^{2}\right)$. For, we showed $f_{1}=f_{X}$ to be the $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ density above, and similarly for Y by symmetry. Fact 3. $E X=\mu_{1}, E Y=\mu_{2}, \operatorname{var} X=\sigma_{1}^{2}, \operatorname{var} Y=\sigma_{2}^{2}$.

This identifies four out of the five parameters: two means μ_{i}, two variances σ_{i}^{2}. Next, recall conditional densities [L9]:

$$
f_{Y \mid X}(y \mid x):=f_{X, Y}(x, y) / f_{X}(x)=f_{X, Y}(x, y) / \int_{-\infty}^{\infty} f_{X, Y}(x, y) d y
$$

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given $X=x$ is $N\left(\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}(x-\right.$ $\left.\left.\mu_{1}\right), \quad \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)$.
Proof. Go back to completing the square (or, return to $\left(^{*}\right)$ with \int and $d y$ deleted):

$$
f(x, y)=\frac{\exp \left(-\frac{1}{2}\left(x-\mu_{1}\right)^{2} / \sigma_{1}^{2}\right)}{\sigma_{1} \sqrt{2 \pi}} \cdot \frac{\exp \left(-\frac{1}{2}\left(y-c_{x}\right)^{2} /\left(\sigma_{2}^{2}\left(1-\rho^{2}\right)\right)\right)}{\sigma_{2} \sqrt{2 \pi} \sqrt{1-\rho^{2}}} .
$$

The first factor is $f_{1}(x)$, by Fact 1. So, $f_{Y \mid X}(y \mid x)=f(x, y) / f_{1}(x)$ is the second factor:

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left(\frac{-\left(y-c_{x}\right)^{2}}{2 \sigma_{2}^{2}\left(1-\rho^{2}\right)}\right),
$$

where c_{x} is the linear function of x given below $\left(^{*}\right)$. //
This not only completes the proof of Fact 4 but gives Facts 5 and 6:
Fact 5. The conditional mean $E(Y \mid X=x)$ is linear in x :

$$
E(Y \mid X=x)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)
$$

Fact 6. The conditional variance of Y given $X=x$ is

$$
\operatorname{var}(Y \mid X=x)=\sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

Fact 7. The correlation coefficient of X, Y is ρ.
Proof.

$$
\rho(X, Y):=E\left[\left(\frac{X-\mu_{1}}{\sigma_{1}}\right)\left(\frac{Y-\mu_{2}}{\sigma_{2}}\right)\right]=\iint\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right) f(x, y) d x d y
$$

Substitute for $f(x, y)=c \exp \left(-\frac{1}{2} Q\right)$, and make the change of variables $u:=$ $\left(x-\mu_{1}\right) / \sigma_{1}, v:=\left(y-\mu_{2}\right) / \sigma_{2}$:

$$
\rho(X, Y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \iint u v \exp \left(\frac{-\left[u^{2}-2 \rho u v+v^{2}\right]}{2\left(1-\rho^{2}\right)}\right) d u d v .
$$

Completing the square as before, $\left[u^{2}-2 \rho u v+v^{2}\right]=(v-\rho u)^{2}+\left(1-\rho^{2}\right) u^{2}$. So

$$
\rho(X, Y)=\frac{1}{\sqrt{2 \pi}} \int u \exp \left(-\frac{u^{2}}{2}\right) d u \cdot \frac{1}{\sqrt{2 \pi} \sqrt{1-\rho^{2}}} \int v \exp \left(-\frac{(v-\rho u)^{2}}{2\left(1-\rho^{2}\right)}\right) d v
$$

Replace v in the inner integral by $(v-\rho u)+\rho u$, and calculate the two resulting integrals separately. The first is zero ('normal mean', or symmetry), the second is ρu ('normal density'). So

$$
\rho(X, Y)=\frac{1}{\sqrt{2 \pi}} \cdot \rho \int u^{2} \exp \left(-\frac{u^{2}}{2}\right) d u=\rho
$$

('normal variance'), as required. //
This completes the identification of all five parameters in the bivariate normal distribution: two means μ_{i}, two variances σ_{i}^{2}, one correlation ρ.

We note in passing
Fact 8. The bivariate normal law has elliptical contours.
For, the contours are $Q(x, y)=$ const, which are ellipses (as Galton found).

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), 102-6) $M(t)$, or $M_{X}(t),:=E\left(e^{t X}\right)$. For X normal $N\left(\mu, \sigma^{2}\right)$,

$$
M(t)=\frac{1}{\sigma \sqrt{2 \pi}} \int e^{t x} \exp \left(-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}\right) d x
$$

Change variable to $u:=(x-\mu) / \sigma$:

$$
M(t)=\frac{1}{\sqrt{2 \pi}} \int \exp \left(\mu t+\sigma u t-\frac{1}{2} u^{2}\right) d u
$$

Completing the square,

$$
M(t)=e^{\mu t} \cdot \frac{1}{\sqrt{2 \pi}} \int \exp \left(-\frac{1}{2}(u-\sigma t)^{2}\right) d u \cdot e^{\frac{1}{2} \sigma^{2} t^{2}}
$$

or $M_{X}(t)=\exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)$ (recognising that the central term on the right is 1 - 'normal density'). So $M_{X-\mu}(t)=\exp \left(\frac{1}{2} \sigma^{2} t^{2}\right)$. Then (check) $\mu=E X=$ $M_{X}^{\prime}(0), \operatorname{var} X=E\left[(X-\mu)^{2}\right]=M_{X-\mu}^{\prime \prime}(0)$.

Similarly in the bivariate case: the MGF is $M_{X, Y}\left(t_{1}, t_{2}\right):=E \exp \left(t_{1} X+\right.$ $\left.t_{2} Y\right)$. In the bivariate normal case:

$$
\begin{aligned}
M\left(t_{1}, t_{2}\right) & =E\left(\exp \left(t_{1} X+t_{2} Y\right)\right)=\iint \exp \left(t_{1} x+t_{2} y\right) f(x, y) d x d y \\
& =\int \exp \left(t_{1} x\right) f_{1}(x) d x \int \exp \left(t_{2} y\right) f(y \mid x) d y
\end{aligned}
$$

The inner integral is the MGF of $Y \mid X=x$, which is $N\left(c_{x}, \sigma_{2}^{2},\left(1-\rho^{2}\right)\right)$, so is $\exp \left(c_{x} t_{2}+\frac{1}{2} \sigma_{2}^{2}\left(1-\rho^{2}\right) t_{2}^{2}\right)$. By Fact $5 c_{x} t_{2}=\left[\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right] t_{2}$, so
$M\left(t_{1}, t_{2}\right)=\exp \left(t_{2} \mu_{2}-t_{2} \frac{\sigma_{2}}{\sigma_{1}} \mu_{1}+\frac{1}{2} \sigma_{2}^{2}\left(1-\rho^{2}\right) t_{2}^{2}\right) \int \exp \left(\left[t_{1}+t_{2} \rho \frac{\sigma_{2}}{\sigma_{1}}\right] x\right) f_{1}(x) d x$.
Since $f_{1}(x)$ is $N\left(\mu_{1}, \sigma_{1}^{2}\right)$, the inner integral is a normal MGF, which is thus $\exp \left(\mu_{1}\left[t_{1}+t_{2} \rho \frac{\sigma_{2}}{\sigma_{1}}\right]+\frac{1}{2} \sigma_{1}^{2}[\ldots]^{2}\right)$. Combining the two terms and simplifying:
Fact 9. The joint MGF is

$$
M_{X, Y}\left(t_{1}, t_{2}\right)=M\left(t_{1}, t_{2}\right)=\exp \left(\mu_{1} t_{1}+\mu_{2} t_{2}+\frac{1}{2}\left[\sigma_{1}^{2} t_{1}^{2}+2 \rho \sigma_{1} \sigma_{2} t_{1} t_{2}+\sigma_{2}^{2} t_{2}^{2}\right]\right)
$$

Fact 10. X, Y are independent if and only if $\rho=0$.
Proof. For densities: X, Y are independent iff the joint density $f_{X, Y}(x, y)$ factorises as the product of the marginal densities $f_{X}(x) . f_{Y}(y)$ (see e.g. Haigh (2002), Cor. 4.17).

For MGFs: X, Y are independent iff the joint MGF $M_{X, Y}\left(t_{1}, t_{2}\right)$ factorises as the product of the marginal MGFs $M_{X}\left(t_{1}\right) \cdot M_{Y}\left(t_{2}\right)$. From Fact 9 , this occurs iff $\rho=0$. Similarly with CFs, if we prefer to work with them. //

Note. We can re-write Fact 5 above as

$$
E[Y \mid X]=\mu_{2}+\frac{\rho \sigma_{1}}{\sigma_{2}}\left(X-\mu_{1}\right)
$$

So as $E[X]=\mu_{1}$, this illustrates the Conditional Mean Formula (II. 4 Property 6, L10):

$$
E[E[Y \mid X]]=\mu_{2}+\frac{\rho \sigma_{1}}{\sigma_{2}}\left(E[X]-\mu_{1}\right)=\mu_{2}=E[Y]
$$

