m3a22soln3.tex

SOLUTIONS 3. 6.11.2015

Q1. (i) In spherical polar coordinates $(r, \theta, \phi)(r$: distance from centre, range 0 to ∞; θ : colatitude ($=\frac{1}{2} \pi$ - latitude), range 0 to $\pi ; \phi$ longitude, range 0 to 2π): increase r to $r+d r$, etc. The element of volume $d V$ is a (to first order) cuboid, of sides $d r$ ("up"), $r d \theta$ ("South"), $r \sin \theta d \phi$ ("East") (draw a diagram - or consult a textbook if you need one!) So

$$
d V=d r \cdot r d \theta \cdot r \sin \theta d \phi=r^{2} \sin \theta d r d \theta d \phi .
$$

So
$V=\int_{0}^{r} r^{2} d r \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta=\frac{1}{3} r^{3} \cdot 2 \pi[-\cos \theta]_{0}^{\pi}=\frac{2 \pi}{3} r^{3}[-(-1)-(-1)]=4 \pi r^{3} / 3$.
(ii) Holding r fixed,

$$
d S=r^{2} \sin \theta \cdot d \theta d \phi
$$

So

$$
A=r^{2} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta=r^{2} .2 \pi .2=4 \pi r^{2}
$$

by above.
(iii) To first order,

$$
d V=S d r: \quad S=d V / d r, \quad V=\int_{0}^{r} S d r
$$

('flattening out' the spherical shell: volume $=$ area \times thickness: the curvature effects are second-order). So (i), (ii) are equivalent: ((ii) follows from (i) by differentiating, and (i) from (ii) by integrating.

Q2. This follows by the same method as the area of an ellipse $A=\pi a b$: wlog $a \geq b \geq c$. Compress [squash] the x - and y-axes in the ratios $a / c, b / c$, to get a sphere of radius c. This has volume $4 \pi c^{3} / 3$. Now dilate [unsquash] the x and y-axes in the ratios $a / c, b / c$, to get volume

$$
V=\frac{4 \pi c^{3}}{3} \cdot \frac{a}{c} \cdot \frac{b}{c}=\frac{4 \pi a b c}{3}
$$

Q3. (i) Choose the vertex V as origin, and the z-axis vertical - the perpendicular from V to the horizontal base (with z going downwards, if we draw the tetrahedron the usual way). Slice the volume into thin horizontal slices. The area of the slice between z and $z+d z$ is $A(z / h)^{2}$, by similarity. So

$$
\begin{gathered}
V=\int_{0}^{h} A(z / h)^{2} d z=A h^{-2} \int_{0}^{h} z^{2} d z=A h^{-2} \cdot h^{3} / 3: \\
V=A h / 3
\end{gathered}
$$

(ii) Similarly in the general case: the above does not use that the base is triangular.

Q4. (i) The range between x and $x+d x$ generates volume $d V=\pi y^{2} d x=$ $\pi f(x)^{2} d x$. Integrate this from a to b.
(ii) The semicircle on base $[-r, r]$ is $y=f(x)=\sqrt{r^{2}-x^{2}}$. This generates te sphere on revolution, giving
$V=\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x=\pi\left[r^{2} x-\frac{1}{3} x^{3}\right]_{-r}^{r}=\pi r^{3}\left[1-\frac{1}{3}-(-1)+\left(-\frac{1}{3}\right)\right]=\pi r^{3}\left(2-\frac{2}{3}\right)=4 \pi r^{3} / 3$.
Q5 (Georges BOULIGAND, 1935). First Proof. For the region S_{1} with area A_{1} with base the hypotenuse, side 1: use cartesian coordinates to approximate its area, arbitrarily closely, by decomposing it into small squares of area $d A_{1}=d x d y$.

For each such small square on side 1, construct similar small squares on sides 2 and 3 , of areas $d A_{2}, d A_{3}$.

By Pythagoras' theorem, $d A_{1}=d A_{2}+d A_{3}$.
Summing, we get $A_{1}=A_{2}+A_{3}$ arbitrarily closely, and so exactly.
Second Proof. Drop a perpendicular from the right-angled vertex to the hypotenuse. This splits the 'big figure' into two 'smaller figures', each similar to it. With l_{1} the length of the hypotenuse and l_{2}, l_{3} those of the other two sides, by similarity lengths scale by $l_{2} / l_{1}, l_{3} / l_{1}$ on going from the big figure to the smaller ones, so areas scale by $\left(l_{2} / l_{1}\right)^{2},\left(l_{3} / l_{1}\right)^{2}$. So $A_{2}+A_{3}=A_{1}\left[\left(l_{2} / l_{1}\right)^{2}+\left(l_{3} / l_{1}\right)^{2}\right]=A_{1}\left(l_{2}^{3}+l_{3}^{2}\right) / l_{1}^{2}$, $=A_{1}$ by Pythagoras' theorem. //

