m3a22prob4.tex

PROBLEMS 4. 6.11.2015

The Bivariate Normal Distribution. Define

$$
f(x, y)=c \exp \left\{-\frac{1}{2} Q(x, y)\right\},
$$

where c is a constant, Q a positive definite quadratic form in x and y. Specifically:

$$
c=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}}, \quad Q=\frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right] .
$$

Here $\sigma_{i}>0, \mu_{i}$ are real, $-1<\rho<1$. Show that:
Q1. f is a probability density - that is, that f is non-negative and integrates to 1 .

Q2. If f is the density of a random 2 -vector $(X, Y), X$ and Y are normal, with distributions $N\left(\mu_{1}, \sigma_{1}^{2}\right), N\left(\mu_{2}, \sigma_{2}^{2}\right)$.

Q3. X, Y have means μ_{1}, μ_{2} and variances $\sigma_{1}^{2}, \sigma_{2}^{2}$.
Q4. The conditional distribution of y given $X=x$ is

$$
Y \left\lvert\,(X=x) \sim N\left(\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right), \quad \sigma_{2}^{2}\left(1-\rho^{2}\right)\right) .\right.
$$

Q5. The conditional mean $E(Y \mid X=x)$ is linear in x :

$$
E(Y \mid X=x)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right) .
$$

Q6. The conditional variance is $\operatorname{var}[Y \mid X]=\sigma_{2}^{2}\left(1-\rho^{2}\right)$.
Q7. The correlation coefficient of X, Y is ρ.
Q8. The density f has elliptical contours [i.e., the curves $f(x, y)$ constant are ellipses].
Q9. The joint MGF and joint CF of X, Y are

$$
M_{X, Y}\left(t_{1}, t_{2}\right)=M\left(t_{1}, t_{2}\right)=\exp \left(\mu_{1} t_{1}+\mu_{2} t_{2}+\frac{1}{2}\left[\sigma_{1}^{2} t_{1}^{2}+2 \rho \sigma_{1} \sigma_{2} t_{1} t_{2}+\sigma_{2}^{2} t_{2}^{2}\right]\right)
$$

$$
\phi_{X, Y}\left(t_{1}, t_{2}\right)=\phi\left(t_{1}, t_{2}\right)=\exp \left(i \mu_{1} t_{1}+i \mu_{2} t_{2}-\frac{1}{2}\left[\sigma_{1}^{2} t_{1}^{2}+2 \rho \sigma_{1} \sigma_{2} t_{1} t_{2}+\sigma_{2} t_{2}^{2}\right]\right)
$$

Q10. X, Y are independent if and only if $\rho=0$.
Note. For those of you with a background in Statistics, this will be familiar material. It is included here as it serves as a very concrete illustration of the more abstract conditioning of II.5,6 via the Radon-Nikodym Theorem. For those of you without a background in Statistics: the key here is completing the square (the method you first encountered in learning how to solve quadratic equations). If you need help, find a good textbook on Statistics and look up 'bivariate normal distribution' in the index.

NHB

