m3f22l8.tex
Lecture 8. 21.10.2016
L_{p} spaces.
For $p \geq 1$, the L_{p} spaces $L_{p}\left(\mathbb{R}^{k}\right)$ on \mathbb{R}^{k} are the spaces of measurable functions f with L_{p}-norm

$$
\|f\|_{p}:=\left(\int|f|^{p}\right)^{\frac{1}{p}}<\infty
$$

Riemann integrals.
Our first exposure to integration is the 'Sixth-Form integral', taught nonrigorously at school. Mathematics undergraduates are taught a rigorous integral (in their first or second years), the Riemann integral [G.B. RIEMANN (1826-1866)] - essentially this is just a rigourization of the school integral. It is much easier to set up than the Lebesgue integral, but much harder to manipulate.

For finite intervals $[a, b]$, we quote:
(i) for any function f Riemann-integrable on $[a, b]$, it is Lebesgue-integrable to the same value (but many more functions are Lebesgue integrable);
(ii) f is Riemann-integrable on $[a, b]$ iff it is continuous a.e. on $[a, b]$. Thus the question, "Which functions are Riemann-integrable?" cannot be answered without the language of measure theory - which then gives one the technically superior Lebesgue integral anyway.
Note. Integration is like summation (which is why Leibniz gave us the integral sign \int, as an elongated S). Lebesgue was a very practical man - his father was a tradesman - and used to think about integration in the following way. Think of a shopkeeper totalling up his day's takings. The Riemann integral is like adding up the takings - notes and coins - in the order in which they arrived. By contrast, the Lebesgue integral is like totalling up the takings in order of size - from the smallest coins up to the largest notes. This is obviously better! In mathematical effect, it exchanges 'integrating by x-values' (abscissae) with 'integrating by y-values' (ordinates).

Lebesgue-Stieltjes integral.
Suppose that $F(x)$ is a non-decreasing function on \mathbb{R} :

$$
F(x) \leq F(x) \quad \text { if } x \leq y
$$

(prime example: F a probability distribution function). Such functions can have at most countably many discontinuities, which are at worst jumps. We may without loss re-define F at jumps so as to be right-continuous.

We now generalise the starting points above:
(i) Measure. We take $\mu((a, b]):=F(b)-F(a)$.
(ii) Integral. We take $\int_{a}^{b} 1:=F(b)-F(a)$.

We may now follow through the successive extension procedures used above. We obtain:
(i) Lebesgue-Stieltjes measure μ, or μ_{F},
(ii) Lebesgue-Stieltjes integral $\int f d \mu$, or $\int f d \mu_{F}$, or even $\int f d F$.

Similarly in higher dimensions; we omit further details.
Finite variation (FV).
If instead of being monotone non-decreasing, F is the difference of two such functions, $F=F_{1}-F_{2}$, we can define the integrals $\int f d F_{1}, \int f d F_{2}$ as above, and then define

$$
\int f d F=\int f d\left(F_{1}-F_{2}\right):=\int f d F_{1}-\int f d F_{2}
$$

If $[a, b]$ is a finite interval and F is defined on $[a, b]$, a finite collection of points, $x_{0}, x_{1}, \ldots, x_{n}$ with $a=x_{0}<x_{1}<\cdots<x_{n}=b$, is called a partition of $[a, b], \mathcal{P}$ say. The sum $\sum_{i=1}^{n}\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right|$ is called the variation of F over the partition. The least upper bound of this over all partitions \mathcal{P} is called the variation of F over the interval $[a, b], V_{a}^{b}(F)$:

$$
V_{a}^{b}(F):=\sup _{\mathcal{P}} \sum\left|F\left(x_{i}\right)-F\left(x_{i-1}\right)\right| .
$$

This may be $+\infty$; but if $V_{a}^{b}(F)<\infty, F$ is said to be of finite variation ($F V$) on $[a, b], F \in F V_{a}^{b}$ (bounded variation, BV, is also used). If F is of finite variation on all finite intervals, F is said to be locally of finite variation, $F \in F V_{\text {loc }}$; if F is of finite variation on the real line, F is of finite variation, $F \in F V$.

We quote (Jordan's theorem) that the following are equivalent:
(i) F is locally of finite variation;
(ii) F can be written as the difference $F=F_{1}-F_{2}$ of two monotone functions.
So the above procedure defines the integral $\int f d F$ when the integrator F is of finite variation.

3 Probability.

Probability spaces.
The mathematical theory of probability can be traced to 1654 , to correspondence between PASCAL (1623-1662) and FERMAT (1601-1665). However, the theory remained both incomplete and non-rigorous till the 20th century. It turns out that the Lebesgue theory of measure and integral sketched above is exactly the machinery needed to construct a rigorous theory of probability adequate for modelling reality (option pricing, etc.) for us. This was realised by the great Russian mathematician and probabilist A.N.KOLMOGOROV (1903-1987), whose classic book of 1933, Grundbegriffe der Wahrscheinlichkeitsrechnung [Foundations of probability theory] inaugurated the modern era in probability.

Recall from your first course on probability that, to describe a random experiment mathematically, we begin with the sample space Ω, the set of all possible outcomes. Each point ω of Ω, or sample point, represents a possible - random - outcome of performing the random experiment. For a set $A \subseteq \Omega$ of points ω we want to know the probability $P(A)$ (or $\operatorname{Pr}(A), \operatorname{pr}(A)$). We clearly want

1. $P(\emptyset)=0, P(\Omega)=1$.
2. $P(A) \geq 0$ for all A.
3. If $A_{1}, A_{2}, \ldots, A_{n}$ are disjoint, $P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$
(finite additivity - fa), which, as above we will strengthen to
3^{*}. If $A_{1}, A_{2} \ldots$ (ad inf.) are disjoint,

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right) \quad \text { (countable additivity - ca). }
$$

4. If $B \subseteq A$ and $P(A)=0$, then $P(B)=0$ (completeness).

Then by 1 and 3 (with $A=A_{1}, \Omega \backslash A=A_{2}$),

$$
P\left(A^{c}\right)=P(\Omega \backslash A)=1-P(A) .
$$

So the class \mathcal{F} of subsets of Ω whose probabilities $P(A)$ are defined should be closed under countable, disjoint unions and complements, and contain the empty set \emptyset and the whole space Ω. Such a class is called a σ-field of subsets of Ω [or sometimes a σ-algebra, which one would write $\mathcal{A}]$. For each $A \in \mathcal{F}$, $P(A)$ should be defined (and satisfy $1,2,3 *, 4$ above). So, $P: \mathcal{F} \rightarrow[0,1]$ is a set-function,

$$
P: A \mapsto P(A) \in[0,1] \quad(A \in \mathcal{F})
$$

The sets $A \in \mathcal{F}$ are called events. Finally, 4 says that all subsets of null-sets (events) with probability zero (we will call the empty set \emptyset empty, not null) should be null-sets (completeness). A probability space, or Kolmogorov triple, is a triple (Ω, \mathcal{F}, P) satisfying these Kolmogorov axioms $1,2,3^{*}, 4$ above. A probability space is a mathematical model of a random experiment.
Random variables.
Next, recall random variables X from your first probability course. Given a random outcome ω, you can calculate the value $X(\omega)$ of X (a scalar - a real number, say; similarly for vector-valued random variables, or random vectors). So, X is a function from Ω to $\mathbb{R}, X \rightarrow \mathbb{R}$,

$$
X: \omega \mapsto X(\omega) \quad(\omega \in \Omega)
$$

Recall also that the distribution function of X is defined by
$F(x), \quad$ or $\quad F_{X}(x), \quad:=P(\{\omega: X(\omega) \leq x\}), \quad$ or $\quad P(X \leq x), \quad(x \in \mathbb{R})$.
We can only deal with functions X for which all these probabilities are defined. So, for each x, we need $\{\omega: X(\omega) \leq x\} \in \mathcal{F}$. We summarize this by saying that X is measurable with respect to the σ-field \mathcal{F} (of events), briefly, X is \mathcal{F}-measurable. Then, X is called a random variable [non- \mathcal{F}-measurable X cannot be handled, and so are left out]. So,
(i) a random variable X is an \mathcal{F}-measurable function on Ω;
(ii) a function on Ω is a random variable (is measurable) iff its distribution function is defined.

Generated σ-fields.

The smallest σ-field containing all the sets $\{\omega: X(\omega) \leq x\}$ for all real x [equivalently, $\{X<x\},\{X \geq x\},\{X>x\}]^{1}$ is called the σ-field generated by X, written $\sigma(X)$. Thus,
X is \mathcal{F}-measurable [is a random variable] iff $\sigma(X) \subseteq \mathcal{F}$.
When the (random) value $X(\omega)$ is known, we know which of the events in the σ-field generated by X have happened: these are the events $\{\omega: X(\omega) \in B\}$, where B runs through the Borel σ-field [the σ-field generated by the intervals - it makes no difference whether open, closed etc.] on the line.

[^0]
[^0]: ${ }^{1}$ Here, and in Measure Theory, whether intervals are open, closed or half-open doesn't matter. In Topology, such distinctions are crucial. One can combine Topology and Measure Theory, but we must leave this here.

