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Real options (continued).
For (i): this comes from the generator of the diffusion GBM(r, σ) (cf. the
SDE for GBM(r, σ), and Black-Scholes PDE, VI.2); for details, see [DP
Ch. 5], or Peskir & Shiryaev [PS, Ch. III]. For (ii) (”Nothing will come of
nothing”): the GBM does not hit 0, but if it approaches 0, so will the value
of the project, so (ii) follows from this by continuity). For (iii), this is the
value-matching condition: on investment, the firm receives the net pay-off
x∗ − I. For (iv) (smooth pasting): think of a rope stretched tightly over a
convex surface.

Again, the ODE (i) is homogeneous (cf. Euler’s theorem). So we use
a trial solution V (x) = Cxp. So (i) gives that p satisfies the fundamental
quadratic

Q(p) :=
1

2
σ2p(p− 1) + µp− r = 0.

The product of the roots is negative, and Q(0) = −r < 0, Q(1) = µ− r < 0.
So one root p1 > 1 and the other p2 < 0. The general solution is V (x) =
C1x

p1 + C2x
p2 , but from V (0) = 0, C2 = 0, so V (x) = C1x

p1 ,= Cxp1 say.
With x∗ the critical value at which it is optimal to invest, (iii) and (iv) give

V (x∗) = x∗ − I, V ′(x∗) = 1.

From these two equations, we can find C and x∗. The second is

V ′(x∗) = Cp1(x
∗)p1−1 = 1, C = (x∗)1−p1/p1.

Then the first gives

C(x∗)p1 = x∗ − I, x∗/p1 = x∗ − I, x∗ =
p1

(p1 − 1)
I.

The main feature here is the factor

q := p1/(p1 − 1) > 1

by which the value must exceed the investment cost I before investment
should be made (q is used because this is related to ”Tobin’s q” in Economics).
One can check that q increases with σ (the riskier the project, the more
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reluctant we are to invest), and also q increases with r (as then investing
our capital risklessly becomes more attractive). Then the critical threshold
above which it is optimal to invest is

x∗ = qI.

Also
C = (qI)1−p1/p1, V (x) = (qI)1−p1xp1/p1.

The results above show that the traditional net present value (NPV –
accountancy-based) approach to valuing real options is misleading – see [DP].
This is no surprise: our methods (arbitrage pricing technique, etc.) are su-
perior to NPV!

7. Stochastic volatility (SV).
The Black-Scholes theory above – in discrete or continuous time – has

involved the volatility – the parameter that describes the sensitivity of the
stock price to new information, to the market’s assessment of new infor-
mation. Volatility is so important that it has been subjected to intensive
scrutiny, in the light of much real market data. Alas, such detailed scrutiny
reveals that volatility is not really constant at all – the Black-Scholes theory
over-simplifies reality. (This is hardly surprising: real financial markets are
more complicated than the contents of this course, as they involve investor
psychology, rather than straight mathematics!) One way out is to admit that
volatility is random (stochastic), and then try to model the stochastic pro-
cess generating it. Volatility exhibits clustering, linked to mean reversion, so
Ornstein-Uhlenbeck models are useful here. Such stochastic volatility models
are topical today.
Stylised facts.

There are a number of stylised facts in mathematical finance. E.g.:
(i). Financial data show skewness. This is a result of the asymmetry between
profit and loss (large losses are lethal!; large profits are just nice to have).
(ii). Financial data have much fatter tails than the normal (Gaussian). We
have discussed this in I.5.
(iii) Financial data show volatility clustering. This is a result of the economic
and financial environment, which is extremely complex, and which moves
between good times/booms/upswings and bad times/slumps/downswings.
Typically, the market ‘gets stuck’, staying in its current state for longer than
is objectively justified, and then over-correcting. As investors are highly
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sensitive to losses (see (i) above), downturns cause widespread nervousness,
which is reflected in higher volatility. The upshot is that good times are as-
sociated with periods of growth but low volatility; downturns spark extended
periods of high volatility (and economic stagnation, or shrinkage).
ARCH and GARCH.

We turn to models that can incorporate such features.
The model equations are (with Zt ind. N(0, 1))

Xt = σtZt, σ2
t = α0 +

p∑
1

αiX
2
i−1, (ARCH(p))

while in GARCH(p, q) the σ2
t term becomes

σ2
t = α0 +

p∑
1

αiX
2
i−1 +

q∑
1

βjσ
2
t−j. (GARCH(p, q))

The names stand for (generalised) autoregressive conditionally heteroscedas-
tic (= variable variance). These are widely used in Econometrics, to model
volatility clustering – the common tendency for periods of high volatility, or
variability, to cluster together in time. They were introduced in 1987 by
Robert Engle (1942) and C. W. J. (Sir Clive) Granger (1934-2009), who re-
ceived the Nobel Prize for this in 2003. From Granger’s obituary (The Times,
1.6.2009): ”Following Granger’s arrival at UCSD in La Jolla, he began the
work with his colleague Robert F. Engle for which he is most famous, and for
which they received the Bank of Sweden Nobel Memorial Prize in Economic
Sciences in 2003. They developed in 1987 the concept of cointegration. Coin-
tegrated series are series that tend to move together, and commonly occur in
economics. Engle and Granger gave the example of the price of tomatoes in
N. and S. Carolina .... Cointegration may be used to reduce non-stationary
situations to stationary ones, which are much easier to handle statistically
and so to make predictions for. This is a matter of great economic impor-
tance, as most macroeconomic time series are non-stationary, so temporary
disturbances in, say, GDP may have a long-lasting effect, and so a permanent
economic cost. The Engle-Granger approach helps to separate out short-term
effects, which are random and unpredictable, from long-term effects, which
reflect the underlying economics. This is invaluable for macroeconomic pol-
icy formulation, on matters such as interest rates, exchange rates, and the
relationship between incomes and consumption.”
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Volatility Modelling
In the standard Black-Scholes theory we have developed, volatility σ is

constant. Thus a graph of volatility against strike K (or stock price S) should
be flat. But typically it isn’t, and displays curvature. Such volatility curves
often turn upwards at both ends (‘volatility smile’); there may well be asym-
metry (‘volatility smirk’).

As above, it may be useful to model volatility stochastically, and use an
SV model. However, the driving noise in this model will have a volatility of
its own (‘vol of vol’), etc. Practitioners often use computer graphics to repre-
sent volatility surfaces – the three-dimensional equivalents of graphs, where
e.g. σ is graphed against K and S. The subject is too big to pursue further
here; there is a good account (mixing theory with practice) in
J. GATHERAL: The volatility surface: A practitioner’s guide. Wiley 2006.
Volatility is rough.

This is the title of an influential paper by Gatheral, Jaisson and Rosen-
baum in 2014. The message there is that (log-)volatility is not only rough, it
is rougher than Brownian motion. The reasons are the obvious ones: high-
frequency trading, and order splitting. There is a family, fractional Brownian
motion, with a parameter controlling the roughness (called the Hurst index):
BM is ‘in the middle’. This is highly topical today: there is a lot going on
in this area.
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Postscript.
1. One recent book on Financial Mathematics describes the subject as being
composed of three strands:
arbitrage – the core economic concept, which we have used throughout;
martingales – the key probabilistic concept (Ch. III on);
numerics. Finance houses in the City use models, which they need to cali-
brate to data – a task involving both statistical and numerical skills, and in
particular an ability to programme.
2. You will probably already have experience with at least one general/mathematical
programming language (e.g., Matlab, Python) (if not: get it, a.s.a.p.!), and
for Statistics, R. You may also know some Numerical Analysis, the theory
behind computation. You may have encountered simulation, also known as
Monte Carlo, and/or a branch of Probability and Statistics called Markov
Chain Monte Carlo (MCMC) – computer-intensive methods for numerical
solutions to problems too complicated to solve analytically. The leaders of R
& D teams in the City need to be expert at both stochastic modelling (e.g.,
to propose new products), and simulation (to evaluate how these perform).
Most of the ones I know use Matlab for this. At a lower level, quantitative
analysts (quants) working under them need expertise in a computer language;
C++ is the industry standard. If you are thinking of a career in Mathemat-
ical Finance, learn C++, as soon as possible, and for academic credit.
3. This course deals with equity markets – with stocks, and financial deriva-
tives of them – options on stocks, etc. The relevant mathematics is finite-
dimensional. Lurking in the background are bond markets (‘money markets’:
bonds, gilts etc., where interest rates dominate), and the relevant options –
interest-rate derivatives, and foreign exchange between different currencies
(‘forex’). The resulting mathematics (which is highly topical, and so in great
demand in the City!) is infinite-dimensional, and so much harder than the
equity-market theory we have done. However, the underlying principles are
basically the same. One has to learn to walk before one learns to run, and
equity markets serve as a preparation for money markets.
4. The aim of this lecture course is simple. It is to familiarize the student
with the basics of Black-Scholes theory, as the core of modern finance, and
with the mathematics necessary to understand this. The motivation driving
the ever-increasing study of this material is the financial services industry
and the City. I hope that any of you who seek City careers will find this
introduction to the subject useful in later life. NHB, 2016
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