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Lecture 30. 15.12.2016

§5. Infinite time-horizon; American puts

We sketch here the theory of the American option (one can exercise at
any time), over an infinite time-horizon. We deal first with a put option (see
VI.6 below under Real options for the corresponding ‘call option’) – giving
the right to sell at the strike price K, at any time τ of our choosing. This
τ has to be a stopping time: we have to take the decision whether or not to
stop at τ based on information already available – no access to the future,
no insider trading. As above, we pass to the risk-neutral measure.

Under the risk-neutral measure, the SDE for GBM becomes

dXt = rXtdt+ σXtdBt. (GBMr)

To evaluate the option, we have to solve the optimal stopping problem

V (x) := sup
τ
Ex[e

−rτ (K −Xτ )
+]

where the sup is taken over all stopping times τ and X0 = x under Px.
The process X satisfying (GBMr) – a diffusion – is specified by a second-

order linear differential operator, called its (infinitesimal) generator,

LX := rxD +
1

2
σ2x2D2, D := ∂/∂x.

Now the closer X gets to 0, the less likely we are to gain by continuing. This
suggests that our best strategy is to stop when X gets too small: to stop at
τ = τb, where

τb := inf{t ≥ 0 : Xt ≤ b},

for some b ∈ (0, K) (the only range in which we would want to exercise an
option to sell at K). This gives the following free boundary problem for the
unknown value function V (x) and the unknown point b ∈ (0, K):

LXV = rV for x > b; (i)

V (x) = (K − x)+ = K − x for x = b; (ii)

V ′(x) = −1 for x = b (smooth fit); (iii)
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V (x) > (K − x)+ for x > b; (iv)

V (x) = (K − x)+ for 0 < x < b. (v)

Writing d := σ2/2 (‘d for diffusion’), (i) is

dx2V ′′ + rxV ′ − rV = 0. (i∗)

This ODE is homogeneous. So (Euler’s theorem): use trial solution:

V (x) = xp.

Substituting gives a quadratic for p:

p2 − (1− r

d
)p− r

d
= 0.

Trial solution: V (x) = xp. Substituting gives a quadratic for p:

p2 − (1− r

d
)p− r

d
= 0 : (p− 1)(p+ r/d) = 0.

One root is p = 1; the other is p = −r/d. So the general solution is V (x) =
C1x + C2x

−r/d. But V (x) ≤ K for all x ≥ 0 (an option giving the right to
sell at price K cannot be worth more than K!): V (x) is bounded. Taking x
large (x < b is covered by (v)), we must have C1 = 0. So (with C := C2)

V (x) = Cx−r/d; V ′(x) = −r
d
.C−r/d−1. (∗)

From (ii),
Cb−r/d = K − b,

while from (iii),

−r
d
.Cb−r/d.

1

b
= −1 : Cb−r/d =

bd

r
.

Equating, this gives C and b:

bd

r
= K − b, K = b(1 + d/r), b = K/(1 + d/r).

Then (∗) and (iii) give

C =
d

r

( K

1 + d/r

)1+r/d

.
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So

V (x) =
d

r

( K

1 + d/r

)1+r/d

x−r/d if x ∈ [b,∞)

= K − x if x ∈ (0, b].

This is in fact the full and correct solution to the problem; see [P&S], §25.1.
The ‘smooth fit’ in (iii) is characteristic of free boundary problems. For

a heuristic analogy: imagine trying to determine the shape of a rope, tied
to the ground on one side of a convex body, stretched over the body, then
pulled tight and tied to the ground on the other side. We can see on physical
grounds that the rope will be:
straight to the left of the convex body;
continuously in contact with the body for a while, then
straight to the right of the body, and
there should be no kink in the rope at the points where it makes and then
leaves contact with the body. This corresponds to ‘smooth fit’ in (iii).

6. Real options (Investment options).
For background and details, see e.g.

[DP] Avinash K. DIXIT and Robert S. PINDYCK: Investment under uncer-
tainty. Princeton University press, 1994;
[PS] G. PESKIR and A. N. SHIRYAEV: Optimal stopping and free-boundary
problems. Birkhäuser, 2006.

The options considered above concern financial derivatives (so called be-
cause they derive from the underlying fundamentals such as stock). We turn
now to options of another kind, concerned with business decision-making.
Typically, we shall be concerned with the decision of whether or not to make
a particular investment, and if so, when. Because these options concern the
real economy (of manufacturing, etc.) rather than financial markets such as
the stock market, such options are often called real options. But because they
typically concern investment decisions, they are also often called investment
options. There is a good introductory treatment in [DP].

The key features are as follows. We are contemplating making some ma-
jor investment – buying or building a factory, drilling an oil well, etc. While
if the decision goes wrong it may be possible to recoup some of the cost,
much or most of it will usually be irrecoverable (a sunk cost – as with an oil
well). So the investment is irreversible – at least in part. Just as stock prices
are uncertain – so we model them as random, using some stochastic process
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– here too, the future profitability of the proposed investment is uncertain.
Finally, we do not have to act now, or indeed at all. So we have an open-
ended – or infinite – time-horizon, T =∞.

We may choose to delay investment,
(a) to gather more information, to help us assess the project, or
(b) to continue to generate interest on the capital we propose to invest.
So we must recognize, and feed into the decision process, the value of waiting
for further information. When we commit ourselves and make the decision
to invest, it is not just the sunk cost that we lose – we lose the valuable
option to wait for new information.

This situation is really that of an American call option with an infinite
time-horizon. With such an American call, we have the right to buy at a
specified price at a time of our choosing (or indeed, not to buy). Following
Dixit & Pindyck [DP, Ch. 5], we formulate an optimal stopping problem, and
solve it as a free boundary problem, using the principle of smooth fit.

We suppose the cost of the investment is I, and that the value of the
project is given by a GBM, X = (Xt) ∼ GBM(µ, σ) (the value of a project
is uncertain for the same reasons that stock prices are uncertain; we model
them both as stochastic processes; GBM is the default option here, just as
in the BS theory of Ch. IV). If we invest at time τ , we want to maximize

V (X) := max
τ

E[(Xτ − I)e−rτ ],

with r the riskless rate (discount rate) as before. Now if µ ≤ 0 the value
of the project will fall, so we should invest immediately if X0 > I and not
invest if not. If µ > r, the growth of X will swamp the investment cost I
and more than offset the discounting, so we should invest and there is no
point in waiting. So we take µ ∈ (0, r]. We invest iff the value x∗ at the time
of investment is large enough; finding x∗ is part of the problem; x∗ is a free
boundary (between the continuation region and the investment region).

We need the following four conditions:

1

2
σ2x2V ′′(x) + µxV ′(x)− rV = 0, (i)

V (0) = 0, (ii)

V (x∗) = x∗ − I, (iii)

V ′(x∗) = 1 (smooth pasting). (iv)
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