m3f22l29.tex
Lecture 29 12.12.2016
Now form a portfolio based on two assets: the underlying stock and the option (recall that options are also assets in their own right - they have a value (Black-Scholes formula), and are traded (in large quantities)). Let the relative portfolio in stock S and derivative Π be $\left(U_{t}^{S}, U_{t}^{\Pi}\right)$. Then the dynamics for the value V of the portfolio are given by

$$
\begin{aligned}
d V_{t} / V_{t} & =U_{t}^{S} d S_{t} / S_{t}+U_{t}^{\Pi} d \Pi_{t} / \Pi_{t} \\
& =U_{t}^{S}\left(\mu d t+\sigma d W_{t}\right)+U_{t}^{\Pi}\left(\mu_{\Pi} d t+\sigma_{\Pi} d W_{t}\right) \\
& =\left(U_{t}^{S} \mu+U_{t}^{\Pi} \mu_{\Pi}\right) d t+\left(U_{t}^{S} \sigma+U_{t}^{\Pi} \sigma_{\Pi}\right) d W_{t},
\end{aligned}
$$

by above. Now both brackets are linear in U^{S}, U^{Π}, and $U^{S}+U^{\Pi}=1$ as proportions sum to 1 . This is one linear equation in the two unknowns U^{S}, U^{Π}, and we can obtain a second one by eliminating the driving Wiener term in the dynamics of V - for then, the portfolio is riskless. So it must have return r, the riskless interest rate, to avoid arbitrage. We thus solve the two equations

$$
\begin{aligned}
U^{S}+U^{\Pi} & =1 \\
U^{S} \sigma+U^{\Pi} \sigma_{\Pi} & =0
\end{aligned}
$$

The solution of the two equations above is

$$
U^{\Pi}=\frac{\sigma}{\sigma-\sigma_{\Pi}}, \quad U^{S}=\frac{-\sigma_{\Pi}}{\sigma-\sigma_{\Pi}},
$$

which as $\sigma_{\Pi}=\sigma S F_{2} / F$ gives the portfolio explicitly as

$$
U^{\Pi}=\frac{F}{F-S F_{2}}, \quad U^{S}=\frac{-S F_{2}}{F-S F_{2}} .
$$

With this choice of relative portfolio, the dynamics of V are given by

$$
d V_{t} / V=\left(U_{t}^{S} \mu+U_{t}^{\Pi} \mu_{\Pi}\right) d t
$$

which has no driving Wiener term. So, no arbitrage as above implies that the return rate is the short interest rate r :

$$
U_{t}^{S} \mu+U_{t}^{\Pi} \mu_{\Pi}=r
$$

Now substitute the values (obtained above)
$\mu_{\Pi}=\left(F+\mu S F_{2}+\frac{1}{2} \sigma^{2} S^{2} F_{22}\right) / F, \quad U^{S}=\left(-S F_{2}\right) /\left(F-S F_{2}\right), \quad U^{\Pi}=F /\left(F-S F_{2}\right)$.
Substituting the values above in the no-arbitrage relation gives

$$
\frac{-S F_{2}}{F-S F_{2}} \cdot \mu+\frac{F}{F-S F_{2}} \cdot \frac{F_{1}+\mu S F_{2}+\frac{1}{2} \sigma^{2} F_{22}}{F}=r .
$$

So

$$
-S F_{2} \mu+F_{1}+\mu S F_{2}+\frac{1}{2} \sigma^{2} S^{2} F_{22}=r F-r S F_{2},
$$

giving the Black-Scholes PDE as required:

$$
\begin{equation*}
F_{1}+r S F_{2}+\frac{1}{2} \sigma^{2} S^{2} F_{22}-r F=0 \tag{BS}
\end{equation*}
$$

Black and Scholes were classically trained applied mathematicians. When they derived their PDE, they recognised it as parabolic, and so a relative of the heat equation. After some months' work, they were able to transform it into the heat equation. The solution to this is known classically. ${ }^{1}$ On transforming back, they obtained the Black-Scholes formula.

Theorem (Feynman-Kac Formula). The solution $F(t, x)$ to the PDE

$$
\begin{equation*}
F_{1}(t, x)+\mu(t, x) F_{2}(t, x)+\frac{1}{2} \sigma^{2}(t, x) F_{22}(t, x)=g(t, x) \tag{PDE}
\end{equation*}
$$

with final condition $F(T, x)=h(x)$ has the stochastic representation

$$
\begin{equation*}
F(t, x)=E_{t, x} h\left(X_{T}\right)-E_{t, x} \int_{t}^{T} g\left(s, X_{s}\right) d s \tag{FK}
\end{equation*}
$$

where X satisfies the SDE

$$
\begin{equation*}
d X_{s}=\mu\left(s, X_{s}\right) d s+\sigma\left(s, X_{s}\right) d W_{s} \quad(t \leq s \leq T) \tag{SDE}
\end{equation*}
$$

[^0]with initial condition $X_{t}=x$.
Proof. Consider a SDE, with initial condition (IC), of the form
\[

$$
\begin{gather*}
d X_{s}=\mu\left(s, X_{s}\right) d s+\sigma\left(s, X_{s}\right) d W_{s} \quad(t \leq s \leq T), \tag{SDE}\\
X_{t}=x \tag{IC}
\end{gather*}
$$
\]

For suitably well-behaved functions μ, σ, this SDE has a unique solution $X=\left(X_{s}: t \leq s \leq T\right)$, a diffusion. We refer for details on solutions of SDEs and diffusions to an advanced text such as [RW2], [RY], [KS §5.7]. Uniqueness of solutions of the SDE is related to completeness, and uniqueness of prices (Representation Theorem for Brownian Martingales, above). (This is as in the FTAP of Ch. IV, but the continuous-time case is harder - here we have to quote uniqueness rather than prove it.)

Taking existence of a unique solution for granted for the moment, consider a smooth function $F\left(s, X_{s}\right)$ of it. By Itô's Lemma, as above,

$$
d F=F_{1} d s+F_{2} d X+\frac{1}{2} F_{22}(d X)^{2},
$$

and as $(d X)^{2}=\left(\mu d s+\sigma d W_{s}\right)^{2}=\sigma^{2}\left(d W_{s}\right)^{2}=\sigma^{2} d s$, this is
$d F=F_{1} d s+F_{2}\left(\mu d s+\sigma d W_{s}\right)+\frac{1}{2} \sigma^{2} F_{22} d s=\left(F_{1}+\mu F_{2}+\frac{1}{2} \sigma^{2} F_{22}\right) d s+\sigma F_{2} d W_{s}$.
Now suppose that F satisfies the PDE, with boundary condition (BC),

$$
\begin{gather*}
F_{1}(t, x)+\mu(t, x) F_{2}(t, x)+\frac{1}{2} \sigma^{2} F_{22}(t, x)=g(t, x) \tag{PDE}\\
F(T, x)=h(x) . \tag{BC}
\end{gather*}
$$

Then (*) gives

$$
d F=g d s+\sigma F_{2} d W_{s}
$$

which can be written in stochastic-integral form as

$$
F\left(T, X_{T}\right)=F\left(t, X_{t}\right)+\int_{t}^{T} g\left(s, X_{s}\right) d s+\int_{t}^{T} \sigma\left(s, X_{s}\right) F_{2}\left(s, X_{s}\right) d W_{s}
$$

The stochastic integral on the right is a martingale, so has constant expectation, which must be 0 as it starts at 0 . Recalling that $X_{t}=x$, writing $E_{t, x}$
for expectation with value x and starting-time t, and the price at expiry T as $h\left(X_{T}\right)$ as before, taking $E_{t, x}$ gives the Feynman-Kac formula:

$$
E_{t, x} h\left(X_{T}\right)=F(t, x)+E_{t, x} \int_{t}^{T} g\left(s, X_{s}\right) d s
$$

Re-derivation of the Black-Scholes formula via the Black-Scholes PDE and the Feynman-Kac formula.

Now replace $\mu(t, x)$ by $r x, \sigma(t, x)$ by $\sigma x, g$ by $r F$ in the Feynman-Kac formula above. The SDE becomes that for $\operatorname{GBM}(r, \sigma)$:

$$
\begin{equation*}
d X_{s}=r X_{s} d s+\sigma X_{s} d W_{s} \tag{**}
\end{equation*}
$$

- the same as for a risky asset with mean return-rate r (the short interestrate for a riskless asset) in place of μ (which disappeared in the Black-Scholes result). The PDE becomes

$$
\begin{equation*}
F_{1}+r x F_{2}+\frac{1}{2} \sigma^{2} x^{2} F_{22}=r F, \tag{BS}
\end{equation*}
$$

the Black-Scholes PDE. So by the Feynman-Kac formula,

$$
d F=r F d s+\sigma F_{2} d W_{s}, \quad F(T, s)=h(s) .
$$

We can eliminate the first term on the right by discounting at rate r : write $G\left(s, X_{s}\right):=e^{-r s} F\left(s, X_{s}\right)$ for the discounted price process. Then as before,

$$
d G=-r e^{-r s} F d s+e^{-r s} d F=e^{-r s}(d F-r F d s)=e^{-r s} . \sigma F_{2} d W
$$

Then integrating, G is a stochastic integral, so a mg: the discounted price process $G\left(s, X_{s}\right)=e^{-r s} F\left(s, X_{s}\right)$ is a martingale, under the measure P^{*} giving the dynamics in $(* *)$. This is the measure P we started with, except that μ has been changed to r. Thus, G has constant P^{*}-expectation: with $X_{t}=x$,
$E_{t, x}^{*} G\left(t, X_{t}\right)=E_{t, x}^{*} e^{-r t} F\left(t, X_{t}\right)=e^{-r t} F(t, x)=E_{T, x}^{*} e^{-r T} F\left(T, X_{T}\right)=e^{-r T} h\left(X_{T}\right)$.
This gives the Black-Scholes formula, as before. //
The route of $\S 3$ via Girsanov's theorem is more direct and probabilistic; that here via the Black-Scholes PDE and Feynman-Kac is more traditional applied mathematics.

[^0]: ${ }^{1}$ See e.g. the link to MPC2 (Mathematics and Physics for Chemists, Year 2) on my website, Weeks 4, 9. The solution is in terms of Green functions. The Green function for (fundamental solution of) the heat equation has the form of a normal density (heat kernel). This reflects the close link between the mathematics of the heat equation (Fourier in 1807) and the mathematics of Brownian motion (Wiener in 1923) noted earlier (Kakutani, 1944 - Potential Theory).

