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Now form a portfolio based on two assets: the underlying stock and the
option (recall that options are also assets in their own right – they have a
value (Black-Scholes formula), and are traded (in large quantities)). Let the
relative portfolio in stock S and derivative Π be (US

t , U
Π
t ). Then the dynamics

for the value V of the portfolio are given by

dVt/Vt = US
t dSt/St + UΠ

t dΠt/Πt

= US
t (µdt+ σdWt) + UΠ

t (µΠdt+ σΠdWt)

= (US
t µ+ UΠ

t µΠ)dt+ (US
t σ + UΠ

t σΠ)dWt,

by above. Now both brackets are linear in US, UΠ, and US + UΠ = 1 as
proportions sum to 1. This is one linear equation in the two unknowns
US, UΠ, and we can obtain a second one by eliminating the driving Wiener
term in the dynamics of V – for then, the portfolio is riskless. So it must
have return r, the riskless interest rate, to avoid arbitrage. We thus solve
the two equations

US + UΠ = 1

USσ + UΠσΠ = 0.

The solution of the two equations above is

UΠ =
σ

σ − σΠ

, US =
−σΠ

σ − σΠ

,

which as σΠ = σSF2/F gives the portfolio explicitly as

UΠ =
F

F − SF2

, US =
−SF2

F − SF2

.

With this choice of relative portfolio, the dynamics of V are given by

dVt/V = (US
t µ+ UΠ

t µΠ)dt,

which has no driving Wiener term. So, no arbitrage as above implies that
the return rate is the short interest rate r:

US
t µ+ UΠ

t µΠ = r.
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Now substitute the values (obtained above)

µΠ = (F+µSF2+
1

2
σ2S2F22)/F, US = (−SF2)/(F−SF2), UΠ = F/(F−SF2).

Substituting the values above in the no-arbitrage relation gives

−SF2

F − SF2

.µ+
F

F − SF2

.
F1 + µSF2 + 1

2
σ2F22

F
= r.

So

−SF2µ+ F1 + µSF2 +
1

2
σ2S2F22 = rF − rSF2,

giving the Black-Scholes PDE as required:

F1 + rSF2 +
1

2
σ2S2F22 − rF = 0. (BS) //

Black and Scholes were classically trained applied mathematicians. When
they derived their PDE, they recognised it as parabolic, and so a relative of
the heat equation. After some months’ work, they were able to transform
it into the heat equation. The solution to this is known classically.1 On
transforming back, they obtained the Black-Scholes formula.

Theorem (Feynman-Kac Formula). The solution F (t, x) to the PDE

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2(t, x)F22(t, x) = g(t, x) (PDE)

with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = Et,xh(XT )− Et,x

∫ T

t

g(s,Xs)ds, (FK)

where X satisfies the SDE

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ) (SDE)

1See e.g. the link to MPC2 (Mathematics and Physics for Chemists, Year 2) on my
website, Weeks 4, 9. The solution is in terms of Green functions. The Green function for
(fundamental solution of) the heat equation has the form of a normal density (heat kernel).
This reflects the close link between the mathematics of the heat equation (Fourier in 1807)
and the mathematics of Brownian motion (Wiener in 1923) noted earlier (Kakutani, 1944
– Potential Theory).

2



with initial condition Xt = x.

Proof. Consider a SDE, with initial condition (IC), of the form

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ), (SDE)

Xt = x. (IC)

For suitably well-behaved functions µ, σ, this SDE has a unique solution
X = (Xs : t ≤ s ≤ T ), a diffusion. We refer for details on solutions of SDEs
and diffusions to an advanced text such as [RW2], [RY], [KS §5.7]. Uniqueness
of solutions of the SDE is related to completeness, and uniqueness of prices
(Representation Theorem for Brownian Martingales, above). (This is as in
the FTAP of Ch. IV, but the continuous-time case is harder – here we have
to quote uniqueness rather than prove it.)

Taking existence of a unique solution for granted for the moment, consider
a smooth function F (s,Xs) of it. By Itô’s Lemma, as above,

dF = F1ds+ F2dX +
1

2
F22(dX)2,

and as (dX)2 = (µds+ σdWs)
2 = σ2(dWs)

2 = σ2ds, this is

dF = F1ds+F2(µds+σdWs)+
1

2
σ2F22ds = (F1 +µF2 +

1

2
σ2F22)ds+σF2dWs.

(∗)
Now suppose that F satisfies the PDE, with boundary condition (BC),

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2F22(t, x) = g(t, x) (PDE)

F (T, x) = h(x). (BC)

Then (∗) gives
dF = gds+ σF2dWs,

which can be written in stochastic-integral form as

F (T,XT ) = F (t,Xt) +

∫ T

t

g(s,Xs)ds+

∫ T

t

σ(s,Xs)F2(s,Xs)dWs.

The stochastic integral on the right is a martingale, so has constant expec-
tation, which must be 0 as it starts at 0. Recalling that Xt = x, writing Et,x
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for expectation with value x and starting-time t, and the price at expiry T
as h(XT ) as before, taking Et,x gives the Feynman-Kac formula:

Et,xh(XT ) = F (t, x) + Et,x

∫ T

t

g(s,Xs)ds. //

Re-derivation of the Black-Scholes formula via the Black-Scholes PDE and
the Feynman-Kac formula.

Now replace µ(t, x) by rx, σ(t, x) by σx, g by rF in the Feynman-Kac
formula above. The SDE becomes that for GBM(r, σ):

dXs = rXsds+ σXsdWs (∗∗)

– the same as for a risky asset with mean return-rate r (the short interest-
rate for a riskless asset) in place of µ (which disappeared in the Black-Scholes
result). The PDE becomes

F1 + rxF2 +
1

2
σ2x2F22 = rF, (BS)

the Black-Scholes PDE. So by the Feynman-Kac formula,

dF = rFds+ σF2dWs, F (T, s) = h(s).

We can eliminate the first term on the right by discounting at rate r: write
G(s,Xs) := e−rsF (s,Xs) for the discounted price process. Then as before,

dG = −re−rsFds+ e−rsdF = e−rs(dF − rFds) = e−rs.σF2dW.

Then integrating, G is a stochastic integral, so a mg: the discounted price
process G(s,Xs) = e−rsF (s,Xs) is a martingale, under the measure P ∗ giving
the dynamics in (∗∗). This is the measure P we started with, except that µ
has been changed to r. Thus, G has constant P ∗-expectation: with Xt = x,

E∗
t,xG(t,Xt) = E∗

t,xe
−rtF (t,Xt) = e−rtF (t, x) = E∗

T,xe
−rTF (T,XT ) = e−rTh(XT ).

This gives the Black-Scholes formula, as before. //

The route of §3 via Girsanov’s theorem is more direct and probabilistic;
that here via the Black-Scholes PDE and Feynman-Kac is more traditional
applied mathematics.
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