m3f22l27tex
Lecture 27. 8.12.2016

We summarise the main steps briefly as (a) - (f) below:
(a) Dynamics are given by $G B M, d S_{t}=\mu S d t+\sigma S d W_{t}$ (VI.1).
(b) Discount: $d \tilde{S}_{t}=(\mu-r) \tilde{S} d t+\sigma \tilde{S} d W_{t}=\sigma \tilde{S}\left(\theta d t+d W_{t}\right)$ (above).

We work with the discounted stock price \tilde{S}_{t}. We would like this to be a martingale, as in Ch. IV, where we passed from P-measure to Q - (or $\left.P^{*}\right)$-measure, so as to make discounted asset prices martingales. Girsanov's theorem (below) accomplishes this, in our new continuous-time setting: it maps P to P^{*} (or Q), and μ to r, so θ to 0 . This kills the $d t$ term on the right in (b). If we then integrate $d \tilde{S}_{t}=\sigma \tilde{S} d W_{t}$, we get an Itô integral, so a martingale, on the right. Assuming this for now:
(c) Use Girsanov's Theorem to change μ to r, so $\theta:=(\mu-r) / \sigma$ to 0 : under $P^{*}, d \tilde{S}_{t}=\sigma \tilde{S} d W_{t}$.
(d) This and $d \tilde{V}_{t}(H)=H_{t} d \tilde{S}_{t}$ (where V is the value process and H the trading strategy replicating the payoff $h-\mathrm{VI} .2$) give $d \tilde{V}_{t}(H)=H_{t} \cdot \sigma \tilde{S}_{t} d W_{t}$ (VI. 2 above). Integrate: \tilde{V}_{t} is a $P^{*}-\mathrm{mg}$, so has constant E^{*}-expectation.
(e) This gives the Risk-Neutral Valuation Formula (RNVF), as in IV.4.
(f) From RNVF, we can obtain BS, by integration, as in IV.6.

It remains to state and discuss Girsanov's theorem. We cannot prove it in full (only the finite-dimensional approximation below) - this is technical Measure Theory. But we must expect this in this chapter: in discrete time (Ch. IV) we could prove everything; here in continuous time, we can't.

Consider first ([KS], $\S 3.5$) independent $N(0,1)$ random variables Z_{1}, \cdots, Z_{n} on (Ω, \mathcal{F}, P). Given a vector $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$, consider a new probability measure \tilde{P} on (Ω, \mathcal{F}) defined by

$$
\tilde{P}(d \omega)=\exp \left\{\Sigma_{1}^{n} \mu_{i} Z_{i}(\omega)-\frac{1}{2} \Sigma_{1}^{n} \mu_{i}^{2}\right\} \cdot P(d \omega) .
$$

This is a positive measure as $\exp \{\}>$.0 , and integrates to 1 as $\int \exp \left\{\mu_{i} Z_{i}\right\} d P=$ $E\left[e^{\mu_{i} Z_{i}}\right]=\exp \left\{\frac{1}{2} \mu_{i}^{2}\right\}$ (normal MGF - Problems 8 Q1), so is a probability measure. It is also equivalent to P (has the same null sets), again as the exponential term is positive (the exponential on the right is the Radon-Nikodym derivative $d \tilde{P} / d P)$. Also
$\tilde{P}\left(Z_{i} \in d z_{i}, \quad i=1, \cdots, n\right)=\exp \left\{\Sigma_{1}^{n} \mu_{i} z_{i}-\frac{1}{2} \Sigma_{1}^{n} \mu_{i}^{2}\right\} . P\left(Z_{i} \in d z_{i}, \quad i=1, \cdots, n\right)$
$\left(Z_{i} \in d z_{i}\right.$ means $z_{i} \leq Z_{i} \leq z_{i}+d z_{i}$, so here $Z_{i}=z_{i}$ to first order)
$=(2 \pi)^{-\frac{1}{2} n} \exp \left\{\Sigma \mu_{i} z_{i}-\frac{1}{2} \Sigma \mu_{i}^{2}-\frac{1}{2} \Sigma z_{i}^{2}\right\} \Pi d z_{i}=(2 \pi)^{-\frac{1}{2} n} \exp \left\{-\frac{1}{2} \Sigma\left(z_{i}-\mu_{i}\right)^{2}\right\} d z_{1} \cdots d z_{n}$.
This says that if the Z_{i} are independent $N(0,1)$ under P, they are independent $N\left(\mu_{i}, 1\right)$ under \tilde{P}. Thus the effect of the change of measure $P \mapsto \tilde{P}$, from the original measure P to the equivalent measure \tilde{P}, is to change the mean, from $0=(0, \cdots, 0)$ to $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)$.

This result extends to infinitely many dimensions - i.e., stochastic processes. We quote (Igor Vladimirovich GIRSANOV (1934-67) in 1960):

Theorem (Girsanov's Theorem). Let $\left(\mu_{t}: 0 \leq t \leq T\right)$ be an adapted process with $\int_{0}^{T} \mu_{t}^{2} d t<\infty \quad$ a.s. such that the process L with

$$
L_{t}:=\exp \left\{\int_{0}^{t} \mu_{s} d W_{s}-\frac{1}{2} \int_{0}^{t} \mu_{s}^{2} d s\right\} \quad(0 \leq t \leq T)
$$

is a martingale. Then, under the probability P_{L} with density L_{T} relative to P, the process W^{*} defined by

$$
W_{t}^{*}:=W_{t}-\int_{0}^{t} \mu_{s} d s, \quad(0 \leq t \leq T)
$$

is a standard Brownian motion (so W is $\mathrm{BM}+\int_{0}^{t} \mu_{s} d s$).
Here, L_{t} is the Radon-Nikodym derivative of P_{L} w.r.t. P on the σ-algebra \mathcal{F}_{t}. In particular, for $\mu_{t} \equiv \mu$, change of measure by introducing the RN derivative $\exp \left\{\mu W_{t}-\frac{1}{2} \mu^{2}\right\}$ corresponds to a change of drift from 0 to μ. Exponential martingale.

The martingale condition in Girsanov's theorem is satisfied in the case $\mu_{t} \equiv \mu$ is constant. For, write

$$
M_{t}:=\exp \left\{\mu W_{t}-\frac{1}{2} \mu^{2} t\right\}
$$

This is a martingale. For, if $s<t$,

$$
\begin{aligned}
E\left[M_{t} \mid \mathcal{F}_{s}\right] & =E\left[\left.\exp \left\{\mu\left(W_{s}+\left(W_{t}-W_{s}\right)\right)-\frac{1}{2} \mu^{2}(s+(t-s))\right\} \right\rvert\, \mathcal{F}_{s}\right] \\
& =\exp \left\{\mu W_{s}-\frac{1}{2} \mu^{2} s\right\} \cdot E\left[\exp \left\{\mu\left(W_{t}-W_{s}\right)-\frac{1}{2} \mu^{2}(t-s)\right]\right.
\end{aligned}
$$

as the conditioning has no effect on the second term, by independent increments of Brownian motion. The first term on the right is M_{s}. The second term is 1 . For, if $Z \sim N(0,1)$,

$$
E[\exp \{\mu Z\}]=\exp \left\{\frac{1}{2} \mu^{2}\right\}
$$

(normal MGF). Also,

$$
W_{t}-W_{s}=\sqrt{t-s} Z, \quad Z \sim N(0,1)
$$

(properties of BM). Combining, M is a mg , as required. //
So the case μ_{t} constant $=\mu$ of Girsanov's theorem passes between BM and $\mathrm{BM}+\mu t$. The argument above uses this with $\mu-r$ for μ.

Girsanov's Theorem (or the Cameron-Martin-Girsanov Theorem: R. H. Cameron and W. T. Martin, 1944, 1945) is formulated in varying degrees of generality, and proved, in [KS, §3.5], [RY, VIII].
Stochastic exponential.
The SDE for GBM, $d S_{t} / S_{t}=\mu d t+\sigma d W_{t}$, with solution $S_{t}=S_{0} \exp \{(\mu-$ $\left.\left.\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}\right\}$ as above, is a special case of the Doléans-Dade exponential (or stochastic exponential: Cathérine Doléans-Dade (1942-2004)). It extends from Brownian motion to semi-martingales M, when it is written $\mathcal{E}(M)$.

Theorem (Risk-Neutral Valuation Formula, RNVF). The no-arbitrage price of the claim $h\left(S_{T}\right)$ is given by

$$
F(t, x)=e^{-r(T-t)} E_{t, x}^{*}\left[h\left(S_{T}\right) \mid \mathcal{F}_{t}\right],
$$

where $S_{t}=x$ is the asset price at time t and P^{*} is the measure under which the asset price dynamics are given by

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}
$$

Proof (Step (e) in the above: (a) - (d) are already done). Change measure from P, corresponding to $G B M(\mu, \sigma)$, to P^{*}, corresponding to $G B M(r, \sigma)$, by Girsanov's Theorem. Then as above, $d \tilde{S}_{t}=\sigma \tilde{S}_{t} d W_{t}$. So by VI.2, $d \tilde{V}_{t}=$ $H_{t} d \tilde{S}_{t}=H_{t} \cdot \sigma \tilde{S}_{t} d W_{t}$, where V is the value process following strategy H to replicate payoff h. Integrating, V_{t} is a P^{*}-martingale, as it is an Itô integral. So it has constant expectation. So if $S_{t}=x$ is the asset price at time t,

$$
E_{t, x}^{*}\left[\tilde{V}_{t}(H) \mid \mathcal{F}_{t}\right]=E_{t, x}^{*} \tilde{V}_{T}(H)=e^{-r T} E_{t, x}^{*} h\left(S_{T}\right):
$$

$$
F(t, x)=E_{t, x}^{*} V_{t}(H)=e^{-r(T-t)} E_{t, x}^{*} h\left(S_{T}\right)
$$

Theorem ((Continuous) Black-Scholes Formula, BS).
$F(t, S)=S \Phi\left(d_{+}\right)-e^{-r(T-t)} K \Phi\left(d_{-}\right), \quad d_{ \pm}:=\left[\log (S / K)+\left(r \pm \frac{1}{2} \sigma^{2}\right)(T-t)\right] / \sigma \sqrt{T-t}$.

Proof (Step (f) in the above). After the change of measure $P \mapsto P^{*}, \mu \mapsto r$ by Girsanov's Theorem, S_{t} has P^{*}-dynamics as in $G B M(r, \sigma)$:

$$
\begin{equation*}
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}, \quad S_{t}=s \tag{*}
\end{equation*}
$$

with W a P^{*}-Brownian motion. So (VI.1) we can solve this explicitly:

$$
S_{T}=s \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(W_{T}-W_{t}\right)\right\}
$$

Now $W_{T}-W_{t}$ is normal $N(0, T-t)$, so $\left(W_{T}-W_{t}\right) / \sqrt{T-t}=: Z \sim N(0,1)$:

$$
S_{T}=s \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma Z \sqrt{T-t}\right\}, \quad Z \sim N(0,1)
$$

So by the Risk-Neutral Valuation Formula, the pricing formula is

$$
F(t, x)=e^{-r(T-t)} \int_{-\infty}^{\infty} h\left(s \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma(T-t)^{\frac{1}{2}} x\right\}\right) \cdot \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} d x
$$

For a general payoff function h, there is no explicit formula for the integral, which has to be evaluated numerically. But we can evaluate the integral for the basic case of a European call option with strike-price K:

$$
h(s)=(s-K)^{+} .
$$

Then
$F(t, x)=e^{-r(T-t)} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}}\left[s \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma(T-t)^{\frac{1}{2}} x\right\}-K\right]_{+} d x$.
We have already evaluated such integrals in Chapter IV, where we obtained the BS formula from the binomial model by a passage to the limit. Completing the square in the exponential as before gives the result, as in IV.6. //

