m3f22l27tex Lecture 27. 8.12.2016

We summarise the main steps briefly as (a) - (f) below:

- (a) Dynamics are given by GBM, $dS_t = \mu S dt + \sigma S dW_t$ (VI.1).
- (b) Discount: $d\tilde{S}_t = (\mu r)\tilde{S}dt + \sigma\tilde{S}dW_t = \sigma\tilde{S}(\theta dt + dW_t)$ (above).

We work with the discounted stock price \tilde{S}_t . We would like this to be a martingale, as in Ch. IV, where we passed from *P*-measure to *Q*- (or P^*)-measure, so as to make discounted asset prices martingales. Girsanov's theorem (below) accomplishes this, in our new continuous-time setting: it maps *P* to P^* (or *Q*), and μ to *r*, so θ to 0. This kills the *dt* term on the right in (b). If we then integrate $d\tilde{S}_t = \sigma \tilde{S} dW_t$, we get an Itô integral, so a martingale, on the right. Assuming this for now:

(c) Use Girsanov's Theorem to change μ to r, so $\theta := (\mu - r)/\sigma$ to 0: under P^* , $d\tilde{S}_t = \sigma \tilde{S} dW_t$.

(d) This and $d\tilde{V}_t(H) = H_t d\tilde{S}_t$ (where V is the value process and H the trading strategy replicating the payoff h - VI.2) give $d\tilde{V}_t(H) = H_t \cdot \sigma \tilde{S}_t dW_t$ (VI.2 above). Integrate: \tilde{V}_t is a P^* -mg, so has constant E^* -expectation.

- (e) This gives the Risk-Neutral Valuation Formula (RNVF), as in IV.4.
- (f) From RNVF, we can obtain BS, by integration, as in IV.6.

It remains to state and discuss *Girsanov's theorem*. We cannot prove it in full (only the finite-dimensional approximation below) – this is technical Measure Theory. But we must expect this in this chapter: in discrete time (Ch. IV) we could prove everything; here in continuous time, we can't.

Consider first ([KS], §3.5) independent N(0, 1) random variables Z_1, \dots, Z_n on (Ω, \mathcal{F}, P) . Given a vector $\mu = (\mu_1, \dots, \mu_n)$, consider a new probability measure \tilde{P} on (Ω, \mathcal{F}) defined by

$$\tilde{P}(d\omega) = \exp\{\Sigma_1^n \mu_i Z_i(\omega) - \frac{1}{2} \Sigma_1^n \mu_i^2\} \cdot P(d\omega).$$

This is a positive measure as $\exp\{.\} > 0$, and integrates to 1 as $\int \exp\{\mu_i Z_i\} dP = E[e^{\mu_i Z_i}] = \exp\{\frac{1}{2}\mu_i^2\}$ (normal MGF – Problems 8 Q1), so is a probability measure. It is also *equivalent* to P (has the same null sets), again as the exponential term is positive (the exponential on the right is the *Radon-Nikodym derivative* $d\tilde{P}/dP$). Also

$$\tilde{P}(Z_i \in dz_i, \quad i = 1, \cdots, n) = \exp\{\sum_{i=1}^{n} \mu_i z_i - \frac{1}{2} \sum_{i=1}^{n} \mu_i^2\} \cdot P(Z_i \in dz_i, \quad i = 1, \cdots, n)$$

 $(Z_i \in dz_i \text{ means } z_i \leq Z_i \leq z_i + dz_i, \text{ so here } Z_i = z_i \text{ to first order})$

$$= (2\pi)^{-\frac{1}{2}n} \exp\{\Sigma\mu_i z_i - \frac{1}{2}\Sigma\mu_i^2 - \frac{1}{2}\Sigma z_i^2\} \Pi dz_i = (2\pi)^{-\frac{1}{2}n} \exp\{-\frac{1}{2}\Sigma(z_i - \mu_i)^2\} dz_1 \cdots dz_n.$$

This says that if the Z_i are independent N(0, 1) under P, they are independent $N(\mu_i, 1)$ under \tilde{P} . Thus the effect of the *change of measure* $P \mapsto \tilde{P}$, from the original measure P to the *equivalent* measure \tilde{P} , is to *change the* mean, from $0 = (0, \dots, 0)$ to $\mu = (\mu_1, \dots, \mu_n)$.

This result extends to infinitely many dimensions – i.e., stochastic processes. We quote (Igor Vladimirovich GIRSANOV (1934-67) in 1960):

Theorem (Girsanov's Theorem). Let $(\mu_t : 0 \le t \le T)$ be an adapted process with $\int_0^T \mu_t^2 dt < \infty$ a.s. such that the process L with

$$L_t := \exp\{\int_0^t \mu_s dW_s - \frac{1}{2} \int_0^t \mu_s^2 ds\} \qquad (0 \le t \le T)$$

is a martingale. Then, under the probability P_L with density L_T relative to P, the process W^* defined by

$$W_t^* := W_t - \int_0^t \mu_s ds, \qquad (0 \le t \le T)$$

is a standard Brownian motion (so W is BM + $\int_0^t \mu_s ds$).

Here, L_t is the Radon-Nikodym derivative of P_L w.r.t. P on the σ -algebra \mathcal{F}_t . In particular, for $\mu_t \equiv \mu$, change of measure by introducing the RN derivative $\exp\{\mu W_t - \frac{1}{2}\mu^2\}$ corresponds to a change of drift from 0 to μ . Exponential martingale.

The martingale condition in Girsanov's theorem is satisfied in the case $\mu_t \equiv \mu$ is constant. For, write

$$M_t := \exp\{\mu W_t - \frac{1}{2}\mu^2 t\}.$$

This is a martingale. For, if s < t,

$$E[M_t | \mathcal{F}_s] = E[\exp\{\mu(W_s + (W_t - W_s)) - \frac{1}{2}\mu^2(s + (t - s))\} | \mathcal{F}_s]$$

=
$$\exp\{\mu W_s - \frac{1}{2}\mu^2 s\} \cdot E[\exp\{\mu(W_t - W_s) - \frac{1}{2}\mu^2(t - s)],$$

as the conditioning has no effect on the second term, by independent increments of Brownian motion. The first term on the right is M_s . The second term is 1. For, if $Z \sim N(0, 1)$,

$$E[\exp\{\mu Z\}] = \exp\{\frac{1}{2}\mu^2\}$$

(normal MGF). Also,

$$W_t - W_s = \sqrt{t - s}Z, \qquad Z \sim N(0, 1)$$

(properties of BM). Combining, M is a mg, as required. //

So the case μ_t constant = μ of Girsanov's theorem passes between BM and BM + μt . The argument above uses this with $\mu - r$ for μ .

Girsanov's Theorem (or the Cameron-Martin-Girsanov Theorem: R. H. Cameron and W. T. Martin, 1944, 1945) is formulated in varying degrees of generality, and proved, in [KS, §3.5], [RY, VIII].

Stochastic exponential.

The SDE for GBM, $dS_t/S_t = \mu dt + \sigma dW_t$, with solution $S_t = S_0 \exp\{(\mu - \frac{1}{2}\sigma^2)t + \sigma W_t\}$ as above, is a special case of the *Doléans-Dade exponential* (or *stochastic exponential*: Cathérine Doléans-Dade (1942-2004)). It extends from Brownian motion to semi-martingales M, when it is written $\mathcal{E}(M)$.

Theorem (Risk-Neutral Valuation Formula, RNVF). The no-arbitrage price of the claim $h(S_T)$ is given by

$$F(t,x) = e^{-r(T-t)} E_{t,x}^*[h(S_T)|\mathcal{F}_t],$$

where $S_t = x$ is the asset price at time t and P^* is the measure under which the asset price dynamics are given by

$$dS_t = rS_t dt + \sigma S_t dW_t.$$

Proof (Step (e) in the above: (a) – (d) are already done). Change measure from P, corresponding to $GBM(\mu, \sigma)$, to P^* , corresponding to $GBM(r, \sigma)$, by Girsanov's Theorem. Then as above, $d\tilde{S}_t = \sigma \tilde{S}_t dW_t$. So by VI.2, $d\tilde{V}_t =$ $H_t d\tilde{S}_t = H_t \cdot \sigma \tilde{S}_t dW_t$, where V is the value process following strategy H to replicate payoff h. Integrating, V_t is a P^* -martingale, as it is an Itô integral. So it has constant expectation. So if $S_t = x$ is the asset price at time t,

$$E_{t,x}^*[V_t(H)|\mathcal{F}_t] = E_{t,x}^*V_T(H) = e^{-rT}E_{t,x}^*h(S_T):$$

$$F(t,x) = E_{t,x}^* V_t(H) = e^{-r(T-t)} E_{t,x}^* h(S_T).$$
 //

Theorem ((Continuous) Black-Scholes Formula, BS).

$$F(t,S) = S\Phi(d_{+}) - e^{-r(T-t)}K\Phi(d_{-}), \qquad d_{\pm} := \left[\log(S/K) + (r\pm\frac{1}{2}\sigma^{2})(T-t)\right]/\sigma\sqrt{T-t}$$

Proof (Step (f) in the above). After the change of measure $P \mapsto P^*$, $\mu \mapsto r$ by Girsanov's Theorem, S_t has P^* -dynamics as in $GBM(r, \sigma)$:

$$dS_t = rS_t dt + \sigma S_t dW_t, \qquad S_t = s, \tag{(*)}$$

with $W \neq P^*$ -Brownian motion. So (VI.1) we can solve this explicitly:

$$S_T = s \exp\{(r - \frac{1}{2}\sigma^2)(T - t) + \sigma(W_T - W_t)\}\$$

Now $W_T - W_t$ is normal N(0, T - t), so $(W_T - W_t) / \sqrt{T - t} =: Z \sim N(0, 1)$:

$$S_T = s \exp\{(r - \frac{1}{2}\sigma^2)(T - t) + \sigma Z\sqrt{T - t}\}, \qquad Z \sim N(0, 1).$$

So by the Risk-Neutral Valuation Formula, the pricing formula is

$$F(t,x) = e^{-r(T-t)} \int_{-\infty}^{\infty} h(s \exp\{(r - \frac{1}{2}\sigma^2)(T-t) + \sigma(T-t)^{\frac{1}{2}}x\}) \cdot \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} dx.$$

For a general payoff function h, there is no explicit formula for the integral, which has to be evaluated numerically. But we can evaluate the integral for the basic case of a European call option with strike-price K:

$$h(s) = (s - K)^+.$$

Then

$$F(t,x) = e^{-r(T-t)} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} [s \exp\{(r - \frac{1}{2}\sigma^2)(T-t) + \sigma(T-t)^{\frac{1}{2}}x\} - K]_+ dx.$$

We have already evaluated such integrals in Chapter IV, where we obtained the BS formula from the binomial model by a passage to the limit. Completing the square in the exponential as before gives the result, as in IV.6. //