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Lecture 27. 8.12.2016

We summarise the main steps briefly as (a) - (f) below:
(a) Dynamics are given by GBM , dSt = µSdt+ σSdWt (VI.1).
(b) Discount: dS̃t = (µ− r)S̃dt+ σS̃dWt = σS̃(θdt+ dWt) (above).

We work with the discounted stock price S̃t. We would like this to be
a martingale, as in Ch. IV, where we passed from P -measure to Q- (or
P ∗)-measure, so as to make discounted asset prices martingales. Girsanov’s
theorem (below) accomplishes this, in our new continuous-time setting: it
maps P to P ∗ (or Q), and µ to r, so θ to 0. This kills the dt term on the
right in (b). If we then integrate dS̃t = σS̃dWt, we get an Itô integral, so a
martingale, on the right. Assuming this for now:
(c) Use Girsanov’s Theorem to change µ to r, so θ := (µ− r)/σ to 0: under
P ∗, dS̃t = σS̃dWt.
(d) This and dṼt(H) = HtdS̃t (where V is the value process and H the trad-
ing strategy replicating the payoff h – VI.2) give dṼt(H) = Ht.σS̃tdWt (VI.2
above). Integrate: Ṽt is a P ∗-mg, so has constant E∗-expectation.
(e) This gives the Risk-Neutral Valuation Formula (RNVF), as in IV.4.
(f) From RNVF, we can obtain BS, by integration, as in IV.6.

It remains to state and discuss Girsanov’s theorem. We cannot prove it
in full (only the finite-dimensional approximation below) – this is technical
Measure Theory. But we must expect this in this chapter: in discrete time
(Ch. IV) we could prove everything; here in continuous time, we can’t.

Consider first ([KS], §3.5) independentN(0, 1) random variables Z1, · · · , Zn
on (Ω,F , P ). Given a vector µ = (µ1, · · · , µn), consider a new probability
measure P̃ on (Ω,F) defined by

P̃ (dω) = exp{Σn
1µiZi(ω)− 1

2
Σn

1µ
2
i }.P (dω).

This is a positive measure as exp{.} > 0, and integrates to 1 as
∫

exp{µiZi}dP =
E[eµiZi ] = exp{1

2
µ2
i } (normal MGF – Problems 8 Q1), so is a probability

measure. It is also equivalent to P (has the same null sets), again as the ex-
ponential term is positive (the exponential on the right is the Radon-Nikodym
derivative dP̃ /dP ). Also

P̃ (Zi ∈ dzi, i = 1, · · · , n) = exp{Σn
1µizi−

1

2
Σn

1µ
2
i }.P (Zi ∈ dzi, i = 1, · · · , n)
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(Zi ∈ dzi means zi ≤ Zi ≤ zi + dzi, so here Zi = zi to first order)

= (2π)−
1
2
n exp{Σµizi−

1

2
Σµ2

i−
1

2
Σz2i }Πdzi = (2π)−

1
2
n exp{−1

2
Σ(zi−µi)2}dz1 · · · dzn.

This says that if the Zi are independent N(0, 1) under P , they are inde-
pendent N(µi, 1) under P̃ . Thus the effect of the change of measure P 7→ P̃ ,
from the original measure P to the equivalent measure P̃ , is to change the
mean, from 0 = (0, · · · , 0) to µ = (µ1, · · · , µn).

This result extends to infinitely many dimensions – i.e., stochastic pro-
cesses. We quote (Igor Vladimirovich GIRSANOV (1934-67) in 1960):

Theorem (Girsanov’s Theorem). Let (µt : 0 ≤ t ≤ T ) be an adapted

process with
∫ T
0
µ2
tdt <∞ a.s. such that the process L with

Lt := exp{
∫ t

0

µsdWs −
1

2

∫ t

0

µ2
sds} (0 ≤ t ≤ T )

is a martingale. Then, under the probability PL with density LT relative to
P , the process W ∗ defined by

W ∗
t := Wt −

∫ t

0

µsds, (0 ≤ t ≤ T )

is a standard Brownian motion (so W is BM +
∫ t
0
µsds).

Here, Lt is the Radon-Nikodym derivative of PL w.r.t. P on the σ-algebra
Ft. In particular, for µt ≡ µ, change of measure by introducing the RN
derivative exp{µWt − 1

2
µ2} corresponds to a change of drift from 0 to µ.

Exponential martingale.
The martingale condition in Girsanov’s theorem is satisfied in the case

µt ≡ µ is constant. For, write

Mt := exp{µWt −
1

2
µ2t}.

This is a martingale. For, if s < t,

E[Mt|Fs] = E[exp{µ(Ws + (Wt −Ws))−
1

2
µ2(s+ (t− s))}|Fs]

= exp{µWs −
1

2
µ2s}.E[exp{µ(Wt −Ws)−

1

2
µ2(t− s)],
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as the conditioning has no effect on the second term, by independent incre-
ments of Brownian motion. The first term on the right is Ms. The second
term is 1. For, if Z ∼ N(0, 1),

E[exp{µZ}] = exp{1

2
µ2}

(normal MGF). Also,

Wt −Ws =
√
t− sZ, Z ∼ N(0, 1)

(properties of BM). Combining, M is a mg, as required. //
So the case µt constant = µ of Girsanov’s theorem passes between BM

and BM + µt. The argument above uses this with µ− r for µ.
Girsanov’s Theorem (or the Cameron-Martin-Girsanov Theorem: R. H.

Cameron and W. T. Martin, 1944, 1945) is formulated in varying degrees of
generality, and proved, in [KS, §3.5], [RY, VIII].
Stochastic exponential.

The SDE for GBM, dSt/St = µdt+σdWt, with solution St = S0 exp{(µ−
1
2
σ2)t + σWt} as above, is a special case of the Doléans-Dade exponential

(or stochastic exponential: Cathérine Doléans-Dade (1942-2004)). It extends
from Brownian motion to semi-martingales M , when it is written E(M).

Theorem (Risk-Neutral Valuation Formula, RNVF). The no-arbitrage
price of the claim h(ST ) is given by

F (t, x) = e−r(T−t)E∗t,x[h(ST )|Ft],

where St = x is the asset price at time t and P ∗ is the measure under which
the asset price dynamics are given by

dSt = rStdt+ σStdWt.

Proof (Step (e) in the above: (a) – (d) are already done). Change measure
from P , corresponding to GBM(µ, σ), to P ∗, corresponding to GBM(r, σ),
by Girsanov’s Theorem. Then as above, dS̃t = σS̃tdWt. So by VI.2, dṼt =
HtdS̃t = Ht.σS̃tdWt, where V is the value process following strategy H to
replicate payoff h. Integrating, Vt is a P ∗-martingale, as it is an Itô integral.
So it has constant expectation. So if St = x is the asset price at time t,

E∗t,x[Ṽt(H)|Ft] = E∗t,xṼT (H) = e−rTE∗t,xh(ST ) :
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F (t, x) = E∗t,xVt(H) = e−r(T−t)E∗t,xh(ST ). //

Theorem ((Continuous) Black-Scholes Formula, BS).

F (t, S) = SΦ(d+)−e−r(T−t)KΦ(d−), d± := [log(S/K)+(r±1

2
σ2)(T−t)]/σ

√
T − t.

Proof (Step (f) in the above). After the change of measure P 7→ P ∗, µ 7→ r
by Girsanov’s Theorem, St has P ∗-dynamics as in GBM(r, σ):

dSt = rStdt+ σStdWt, St = s, (∗)

with W a P ∗-Brownian motion. So (VI.1) we can solve this explicitly:

ST = s exp{(r − 1

2
σ2)(T − t) + σ(WT −Wt)}.

Now WT −Wt is normal N(0, T − t), so (WT −Wt)/
√
T − t =: Z ∼ N(0, 1):

ST = s exp{(r − 1

2
σ2)(T − t) + σZ

√
T − t}, Z ∼ N(0, 1).

So by the Risk-Neutral Valuation Formula, the pricing formula is

F (t, x) = e−r(T−t)
∫ ∞
−∞

h(s exp{(r − 1

2
σ2)(T − t) + σ(T − t)

1
2x}).e

− 1
2
x2

√
2π

dx.

For a general payoff function h, there is no explicit formula for the integral,
which has to be evaluated numerically. But we can evaluate the integral for
the basic case of a European call option with strike-price K:

h(s) = (s−K)+.

Then

F (t, x) = e−r(T−t)
∫ ∞
−∞

e−
1
2
x2

√
2π

[s exp{(r− 1

2
σ2)(T − t) +σ(T − t)

1
2x}−K]+dx.

We have already evaluated such integrals in Chapter IV, where we obtained
the BS formula from the binomial model by a passage to the limit. Com-
pleting the square in the exponential as before gives the result, as in IV.6. //
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