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Return intervals.
We saw above (VI.1 L25) that log-prices and returns being (approxi-

mately) normal is bound up with

log(1 + x) ∼ x, (1 + x/n)n → ex

– which we can now recognise as being bound up with the passage from dis-
crete time (time-interval ∆t, small but finite, as in IV) to continuous time
(time-interval dt, infinitesimal, and the SDE for GBM as above). Now in
investment, there are many possible time-scales, corresponding to how often
we observe prices; we single out the main three (cf. [BK, §2.9]).
1. Long (macroscopic).

Here we are investing over a time-scale of months (say), and observe prices
daily (say). As the price-change over the month is the sum of price-changes
over the days, and these are independent (as Brownian increments are), the
reason we get normality is the Central Limit Theorem (CLT): if we sum
many independent random variables with finite mean and variance, we get
normality (in the limit) after centring and scaling. This is the phenomenon of
aggregational Gaussianity. Note that Gaussian (normal) tails are extremely
thin (‘minus log-density’ grows quadratically). The ‘rule of thumb’ is that
16 trading days suffice here.
2. Intermediate (mesoscopic).

If our investment time-frame is, say, a day (there are ‘day traders’ out
there!), aggregational Gaussianity does not set in, and the tails observed are
much fatter – typically, ‘minus log-density’ grows linearly. One model com-
monly used here is that of hyperbolic distributions (see e.g. [BK, §2.12]).
3. Short (microscopic).

With the development of the Internet and the intensive computerisation
of trading, high-frequency data – ‘tick data’ – is available; here the interval
may be of the order of seconds or much smaller. Here, the picture is differ-
ent again: the tails are much fatter still: tails decay like a power, so ‘minus
log-density’ grows logarithmically. Distributions used include Student t and
stable (see e.g. [BK, §2.9]).
Note. The world’s most famous investor, Warren Buffett, the Sage of Om-
aha, famously invests right, and over a time-frame of many years.
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§2. The Black-Scholes Model

For the purposes of this section only, it is convenient to be able to use the
‘W for Wiener’ notation for Brownian motion/Wiener process, thus liberating
B for the alternative use ‘B for bank [account]’. Thus our driving noise terms
will now involve dWt, our deterministic [bank-account] terms dBt.

We now consider an investor constructing a trading strategy in continuous
time, with the choice of two types of investment:
(i) riskless investment in a bank account paying interest at rate r > 0 (the
short rate of interest): Bt = B0e

rt (t ≥ 0) [we neglect the complications
involved in possible failure of the bank – though banks do fail – witness
Barings 1995, or AIB 2002!];
(ii) risky investment in stock, one unit of which has price modelled as above
by GMB(µ, σ). Here the volatility σ > 0; the restriction 0 < r < µ on the
short rate r for the bank and underlying rate µ for the stock are economically
natural (but not mathematically necessary); the stock dynamics are thus

dSt = St(µdt+ σdWt).

Notation. Later, we shall need to consider several types of risky stock - d
stocks, say. It is convenient, and customary, to use a superscript i to label
stock type, i = 1, · · · , d; thus S1, · · · , Sd are the risky stock prices. We can
then use a superscript 0 to label the bank account, S0. So with one risky
asset as above, the dynamics are

dS0
t = rS0

t dt,

dS1
t = µS1

t dt+ σS1
t dWt.

We shall focus on pricing at time 0 of options with expiry time T ; thus the
index-set for time t throughout may be taken as [0, T ] rather than [0,∞).

We proceed as in the discrete-time model of IV.1. A trading strategy H
is a vector stochastic process

H = (Ht : 0 ≤ t ≤ T ) = ((H0
t , H

1
t , · · · , Hd

t )) : 0 ≤ t ≤ T )

which is previsible: each H i
t is a previsible process (so, in particular, (Ft−)-

adapted) [we may simplify with little loss of generality by replacing previsi-
bility here by left-continuity of Ht in t]. The vector Ht = (H0

t , H
1
t , · · · , Hd

t )
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is the portfolio at time t. If St = (S0
t , S

1
t , · · · , Sd

t ) is the vector of prices at
time t, the value of the portfolio at t is the scalar product

Vt(H) := Ht.St = Σd
i=0H

i
tS

i
t .

The discounted value is

Ṽt(H) = βt(Ht.St) = Ht.S̃t,

where βt := 1/S0
t = e−rt (fixing the scale by taking the initial bank account

as 1, S0
0 = 1), so

S̃t = (1, βtS
1
t , · · · , βtSd

t )

is the vector of discounted prices.
Recall that

(i) in IV.1 H is a self-financing strategy if ∆Vn(H) = Hn.∆Sn, i.e. Vn(H) is
the martingale transform of S by H,
(ii) stochastic integrals are the continuous analogues of mg transforms.
We thus define the strategy H to be self-financing, H ∈ SF , if

dVt = Ht.dSt = Σd
0H

i
tdS

i
t .

The discounted value process is

Ṽt(H) = e−rtVt(H)

and the interest rate is r. So

dṼt(H) = −re−rtdt.Vt(H) + e−rtdVt(H)

(since e−rt has finite variation, this follows from integration by parts,

d(XY )t = XtdYt + YtdXt +
1

2
d〈X, Y 〉t

– the quadratic covariation of a finite-variation term with any term is zero)

= −re−rtHt.Stdt+ e−rtHt.dSt = Ht.(−re−rtStdt+ e−rtdSt) = Ht.dS̃t

(S̃t = e−rtSt, so dS̃t = −re−rtStdt+ e−rtdSt as above).
Summarising: for H self-financing,

dVt(H) = Ht.dSt, dṼt(H) = Ht.dS̃t,
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Vt(H) = V0(H) +

∫ t

0

HsdSs, Ṽt(H) = Ṽ0(H) +

∫ t

0

HsdS̃s.

Now write U i
t := H i

tS
i
t/Vt(H) = H i

tS
i
t/ΣjH

j
t S

j
t for the proportion of the

value of the portfolio held in asset i = 0, 1, · · · , d. Then ΣU i
t = 1, and

Ut = (U0
t , · · · , Ud

t ) is called the relative portfolio. For H self-financing,

dVt = Ht.dSt = ΣH i
tdS

i
t = VtΣ

H i
tS

i
t

Vt
.
dSi

t

Si
t

: dVt = VtΣU
i
tdS

i
t/S

i
t .

Dividing through by Vt, this says that the return dVt/Vt is the weighted
average of the returns dSi

t/S
i
t on the assets, weighted according to their pro-

portions U i
t in the portfolio – as one would expect.

Note. Having set up this notation (that of [HP]) – in order to be able if
we wish to have a basket of assets in our portfolio – we now prefer – for
simplicity – to specialise back to the simplest case, that of one risky asset.
Thus we will now take d = 1 until further notice.

§3. The (continuous) Black-Scholes formula (BS): derivation via
Girsanov’s Theorem

The Sharpe ratio.
There is no point in investing in a risky asset with mean return rate µ,

when cash is a riskless asset with return rate r, unless µ > r. The excess
return µ − r (the investor’s reward for taking a risk) is compared with the
risk, as measured by the volatility σ, via the Sharpe ratio

θ := (µ− r)/σ,

also known as the market price of risk. This is important, both here (see
below), in CAPM (I.3, L2), and in asset allocation decisions.

Consider now the Black-Scholes model, with dynamics

dBt = rBtdt, dSt = µStdt+ σStdWt.

The discounted asset prices S̃t := e−rtSt have dynamics given, as before, by

dS̃t = −re−rtStdt+ e−rtdSt = −rS̃tdt+ µS̃tdt+ σS̃tdWt

= (µ− r)S̃tdt+ σS̃tdWt = σS̃t(θdt+ dWt).
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