m3f22l24tex
Lecture 24 1.12.2016
Note. The stochastic integral for simple integrands is essentially a martingale transform, and the above is essentially the proof of Ch. III that martingale transforms are martingales.

We pause to note a property of martingales which we shall need below. Call $X_{t}-X_{s}$ the increment of X over $(s, t]$. Then for a martingale X, the product of the increments over disjoint intervals has zero mean. For, if $s<t \leq u<v$,

$$
\begin{aligned}
E\left[\left(X_{v}-X_{u}\right)\left(X_{t}-X_{s}\right)\right] & =E\left[E\left[\left(X_{v}-X_{u}\right)\left(X_{t}-X_{s}\right) \mid \mathcal{F}_{u}\right]\right] \\
& =E\left[\left(X_{t}-X_{s}\right) E\left[\left(X_{v}-X_{u}\right) \mid \mathcal{F}_{u}\right]\right]
\end{aligned}
$$

taking out what is known (as $s, t \leq u$). The inner expectation is zero by the martingale property, so the LHS is zero, as required.

D (Itô isometry). $E\left[\left(I_{t}(X)\right)^{2}\right]$, or $E\left[\left(\int_{0}^{t} X_{s} d B_{s}\right)^{2}\right],=E\left[\int_{0}^{t} X_{s}^{2} d s\right]$.
Proof. The LHS above is $E\left[I_{t}(X) . I_{t}(X)\right]$, i.e.

$$
E\left[\left(\Sigma_{i=0}^{n-1} \xi_{i}\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)+\xi_{n}\left(B(t)-B\left(t_{n}\right)\right)\right)^{2}\right]
$$

Expanding the square, the cross-terms have expectation zero by above, so

$$
E\left[\Sigma_{i=0}^{n-1} \xi_{i}^{2}\left(B\left(t_{i+i}-B\left(t_{i}\right)\right)^{2}+\xi_{n}^{2}\left(B(t)-B\left(t_{n}\right)\right)^{2}\right] .\right.
$$

Since ξ_{i} is $\mathcal{F}_{t_{i}}$-measurable, each ξ_{i}^{2}-term is independent of the squared Brownian increment term following it, which has expectation $\operatorname{var}\left(B\left(t_{i+1}\right)-B\left(t_{i}\right)\right)=$ $t_{i+1}-t_{i}$. So we obtain

$$
\sum_{i=0}^{n-1} E\left[\xi_{i}^{2}\right]\left(t_{i+1}-t_{i}\right)+E\left[\xi_{n}^{2}\right]\left(t-t_{n}\right)
$$

This is $\int_{0}^{t} E\left[X_{u}^{2}\right] d u=E\left[\int_{0}^{t} X_{u}^{2} d u\right]$, as required.
E. Itô isometry (continued). $I_{t}(X)-I_{s}(X)=\int_{s}^{t} X_{u} d B_{u}$ satisfies

$$
E\left[\left(\int_{s}^{t} X_{u} d B_{u}\right)^{2}\right]=E\left[\int_{s}^{t} X_{u}^{2} d u\right] \quad P-a . s .
$$

Proof: as above.
F. Quadratic variation. The QV of $I_{t}(X)=\int_{0}^{t} X_{u} d B_{u}$ is $\int_{0}^{t} X_{u}^{2} d u$.

This is proved in the same way as the case $X \equiv 1$, that B has quadratic variation process t.

Integrands.
The properties above suggest that $\int_{0}^{t} X d B$ should be defined only for processes with

$$
\int_{0}^{t} E\left[X_{u}^{2}\right] d u<\infty \quad \text { for all } \quad t
$$

We shall restrict attention to such X in what follows. This gives us an $L_{2^{-}}$ theory of stochastic integration (compare the L_{2}-spaces introduced in Ch. II), for which Hilbert-space methods are available.

3. Approximation.

Recall steps 1 (indicators) and 2 (simple integrands). By analogy with the integral of Ch. II, we seek a suitable class of integrands suitably approximable by simple integrands. It turns out that:
(i) The suitable class of integrands is the class of left-continuous adapted processes X with $\int_{0}^{t} E\left[X_{u}^{2}\right] d u<\infty$ for all $t>0$ (or all $t \in[0, T]$ with finite time-horizon T, as here),
(ii) Each such X may be approximated by a sequence of simple integrands X_{n} so that the stochastic integral $I_{t}(X)=\int_{0}^{t} X d B$ may be defined as the limit of $I_{t}\left(X_{n}\right)=\int_{0}^{t} X_{n} d B$,
(iii) The stochastic integral $\int_{0}^{t} X d B$ so defined still has properties A-F above.

It is not possible to include detailed proofs of these assertions in a course of this type [recall that we did not construct the measure-theoretic integral of Ch. II in detail either - and this is harder!]. The key technical ingredient needed is the Kunita-Watanabe inequalities. See e.g. [KS], §§3.1-2.

One can define stochastic integration in much greater generality.

1. Integrands. The natural class of integrands X to use here is the class of predictable processes. These include the left-continuous processes to which we confine ourselves above.
2. Integrators. One can construct a closely analogous theory for stochastic integrals with the Brownian integrator B above replaced by a continuous local martingale integrator M (or more generally by a local martingale: see
below). The properties above hold, with D replaced by

$$
E\left[\left(\int_{0}^{t} X_{u} d M_{u}\right)^{2}\right]=E\left[\int_{0}^{t} X_{u}^{2} d\langle M\rangle_{u}\right] .
$$

See e.g. [KS], [RY] for details.
One can generalise further to semimartingale integrators: these are processes expressible as the sum of a local martingale and a process of (locally) finite variation. Now C is replaced by: stochastic integrals of local martingales are local martingales. See e.g. [RW1] or Meyer (1976) for details.

§6. Stochastic Differential Equations (SDEs) and Itô's Lemma

Suppose that U, V are adapted processes, with U locally integrable (so $\int_{0}^{t} U_{s} d s$ is defined as an ordinary integral, as in Ch. II), and V is leftcontinuous with $\int_{0}^{t} E\left[V_{u}^{2}\right] d u<\infty$ for all t (so $\int_{0}^{t} V_{s} d B_{s}$ is defined as a stochastic integral, as in §5). Then

$$
X_{t}:=x_{0}+\int_{0}^{t} U_{s} d s+\int_{0}^{t} V_{s} d B_{s}
$$

defines a stochastic process X with $X_{0}=x_{0}$. It is customary, and convenient, to express such an equation symbolically in differential form, in terms of the stochastic differential equation

$$
\begin{equation*}
d X_{t}=U_{t} d t+V_{t} d B_{t}, \quad X_{0}=x_{0} \tag{SDE}
\end{equation*}
$$

Now suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function, continuously differentiable once in its first argument (which will denote time), and twice in its second argument (space): $f \in C^{1,2}$. The question arises of giving a meaning to the stochastic differential $d f\left(t, X_{t}\right)$ of the process $f\left(t, X_{t}\right)$, and finding it.

Recall the Taylor expansion of a smooth function of several variables, $f\left(x_{0}, x_{1}, \cdots, x_{d}\right)$ say. We use suffices to denote partial derivatives: $f_{i}:=$ $\partial f / \partial x_{i}, \quad f_{i, j}:=\partial^{2} f / \partial x_{i} \partial x_{j}$ (recall that if partials not only exist but are continuous, then the order of partial differentiation can be changed: $f_{i, j}=$ $f_{j, i}$, etc. $)$. Then for $x=\left(x_{0}, x_{1}, \cdots, x_{d}\right)$ near u,

$$
f(x)=f(u)+\Sigma_{i=0}^{d}\left(x_{i}-u_{i}\right) f_{i}(u)+\frac{1}{2} \Sigma_{i, j=0}^{d}\left(x_{i}-u_{i}\right)\left(x_{j}-u_{j}\right) f_{i, j}(u)+\cdots
$$

In our case (writing t_{0} in place of 0 for the starting time):

$$
\begin{aligned}
f\left(t, X_{t}\right)= & f\left(t_{0}, X\left(t_{0}\right)\right)+\left(t-t_{0}\right) f_{1}\left(t_{0}, X\left(t_{0}\right)\right)+\left(X(t)-X\left(t_{0}\right)\right) f_{2}+\frac{1}{2}\left(t-t_{0}\right)^{2} f_{11}+ \\
& \left(t-t_{0}\right)\left(X(t)-X\left(t_{0}\right)\right) f_{12}+\frac{1}{2}\left(X(t)-X\left(t_{0}\right)\right)^{2} f_{22}+\cdots,
\end{aligned}
$$

which may be written symbolically as

$$
d f(t, X(t))=f_{1} d t+f_{2} d X+\frac{1}{2} f_{11}(d t)^{2}+f_{12} d t d X+\frac{1}{2} f_{22}(d X)^{2}+\cdots
$$

In this, we
(i) substitute $d X_{t}=U_{t} d t+V_{t} d B_{t}$ from above,
(ii) substitute $\left(d B_{t}\right)^{2}=d t$, i.e. $\left|d B_{t}\right|=\sqrt{d t}$, from $\S 4$:
$d f=f_{1} d t+f_{2}(U d t+V d B)+\frac{1}{2} f_{11}(d t)^{2}+f_{12} d t(U d t+V d B)+\frac{1}{2} f_{22}(U d t+V d B)^{2}+\cdots$
Now using $(d B)^{2}=d t$,

$$
\begin{gathered}
(U d t+V d B)^{2}=V^{2} d t+2 U V d t d B+U^{2}(d t)^{2} \\
=V^{2} d t+\text { higher-order terms : } \\
d f=\left(f_{1}+U f_{2}+\frac{1}{2} V^{2} f_{22}\right) d t+V f_{2} d B+\text { higher-order terms. }
\end{gathered}
$$

Summarising, we obtain Itô's Lemma, the analogue for the Itô or stochastic calculus of the chain rule for ordinary (Newton-Leibniz) calculus:

Theorem (Itô's Lemma). If X_{t} has stochastic differential

$$
d X_{t}=U_{t} d t+V_{t} d B_{t}, \quad X_{0}=x_{0}
$$

and $f \in C^{1,2}$, then $f=f\left(t, X_{t}\right)$ has stochastic differential

$$
d f=\left(f_{1}+U f_{2}+\frac{1}{2} V^{2} f_{22}\right) d t+V f_{2} d B_{t}
$$

That is, writing f_{0} for $f\left(0, x_{0}\right)$, the initial value of f,

$$
\left.f\left(t, X_{t}\right)\right)=f_{0}+\int_{0}^{t}\left(f_{1}+U f_{2}+\frac{1}{2} V^{2} f_{22}\right) d t+\int_{0}^{t} V f_{2} d B
$$

