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Theorem (PWZ theorem: Paley-Wiener-Zygmund, 1933). For (Zn)∞0
independent N(0, 1) random variables, λn, ∆n as above,

Wt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process W = (Wt : t ∈ [0, 1]) is Brow-
nian motion.

Thus the above description does indeed define a stochastic process X =
(Xt)t∈[0,1] on (C[0, 1],F , (Ft), P ). The construction gives X on C[0, n] for
each n = 1, 2, · · ·, and combining these: X exists on C[0,∞). It is also
unique (a stochastic process is uniquely determined by its finite-dimensional
distributions and the restriction to path-continuity).

No construction of Brownian motion is easy: one needs both some work
and some knowledge of measure theory. But existence is really all we need,
and we assume this. For background, see any measure-theoretic text on
stochastic processes. The classic is Doob’s book, quoted above (see VIII.2
there). Excellent modern texts include Karatzas & Shreve [KS] (see particu-
larly §2.2-4 for construction and §5.8 for applications to economics), Revuz &
Yor [RY], Rogers & Williams [RW1] (Ch. 1), [RW2] Itô calculus – below).

We denote standard Brownian motion BM(R) – or just BM for short
– by B = (Bt) (B for Brown), though W = (Wt) (W for Wiener) is also
common. Standard Brownian motion BM(Rd) in d dimensions is defined
by B(t) := (B1(t), · · · , Bd(t)), where B1, · · · , Bd are independent standard
Brownian motions in one dimension (independent copies of BM(R)).
Zeros.

It can be shown that Brownian motion oscillates:

lim supt→∞Xt = +∞, lim inft→∞Xt = −∞ a.s.

Hence, for every n there are zeros (times t with Xt = 0) of X with t ≥ n
(indeed, infinitely many such zeros). So if

Z := {t ≥ 0 : Xt = 0}
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denotes the zero-set of BM(R):
1. Z is an infinite set.
Next, if tn are zeros and tn → t, then by path-continuity B(tn)→ B(t); but
B(tn) = 0, so B(t) = 0:
2. Z is a closed set (Z contains its limit points).
Less obvious are the next two properties:
3. Z is a perfect set: every point t ∈ Z is a limit point of points in Z. So
there are infinitely many zeros in every neighbourhood of every zero (so the
paths must oscillate amazingly fast!).
4. Z is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, the diagram above (or any other diagram!) grossly distorts
Z: it is impossible to draw a realistic picture of a Brownian path.
Brownian Scaling.

For each c ∈ (0,∞), X(c2t) is N(0, c2t), so Xc(t) := c−1X(c2t) is N(0, t).
Thus Xc has all the defining properties of a Brownian motion (check). So,
Xc IS a Brownian motion:

Theorem. If X is BM and c > 0, Xc(t) := c−1X(c2t), then Xc is again a
BM .

Corollary. X is self-similar (reproduces itself under scaling), so a Brownian
path X(.) is a fractal. So too is the zero-set Z.

Brownian motion owes part of its importance to belonging to all the im-
portant classes of stochastic processes: it is (strong) Markov, a (continuous)
martingale, Gaussian, a diffusion, a Lévy process (process with stationary
independent increments), etc.

§2. Filtrations; Finite-Dimensional Distributions

The underlying set-up is as before, but now time is continuous rather
than discrete; thus the time-variable will be t ≥ 0 in place of n = 0, 1, 2, . . ..
The information available at time t is the σ-field Ft; the collection of these as
t ≥ 0 varies is the filtration, modelling the information flow. The underlying
probability space, endowed with this filtration, gives us the stochastic basis
(filtered probability space) on which we work,

We assume that the filtration is complete (contains all subsets of null-sets

2



as null-sets), and right-continuous: Ft = Ft+, i.e.

Ft = ∩s>tFs

(the ‘usual conditions’ – right-continuity and completeness – in Meyer’s ter-
minology).

A stochastic process X = (Xt)t≥0 is a family of random variables defined
on a filtered probability space with Xt Ft-measurable for each t: thus Xt is
known when Ft is known, at time t.

If {t1, · · · , tn} is a finite set of time-points in [0,∞), (Xt1 , · · · , Xtn), or
(X(t1), · · · , X(tn)) (for typographical convenience, we use both notations in-
terchangeably, with or without ω: Xt(ω), or X(t, ω)) is a random n-vector,
with a distribution, µ(t1, · · · , tn) say. The class of all such distributions as
{t1, · · · , tn} ranges over all finite subsets of [0,∞) is called the class of all
finite-dimensional distributions of X. These satisfy certain obvious consis-
tency conditions:
(i) deletion of one point ti can be obtained by ‘integrating out the unwanted
variable’, as usual when passing from joint to marginal distributions,
(ii) permutation of the ti permutes the arguments of the measure µ(t1, · · · , tn)
on Rn.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the DANIELL-KOLMOGOROV Theorem: P. J. Daniell in
1918, A. N. Kolmogorov in 1933).

Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives a stochastic process
X as a random function on [0,∞), i.e. a random variable on R[0,∞). This
is a vast and unwieldy space; we shall usually be able to confine attention
to much smaller and more manageable spaces, of functions satisfying reg-
ularity conditions. The most important of these is continuity: we want to
be able to realise X = (Xt(ω))t≥0 as a random continuous function, i.e. a
member of C[0,∞); such a process X is called path-continuous (since the
map t → Xt(ω) is called the sample path, or simply path, given by ω) – or
more briefly, continuous. This is possible for the extremely important case of
Brownian motion (below), for example, and its relatives. Sometimes we need
to allow our random function Xt(ω) to have jumps. It is then customary,
and convenient, to require Xt to be right-continuous with left limits (rcll),
or càdlàg (continu à droite, limite à gauche) – i.e. to have X in the space
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D[0,∞) of all such functions (the Skorohod space). This is the case, for in-
stance, for the Poisson process and its relatives.

General results on realisability – whether or not it is possible to realise,
or obtain, a process so as to have its paths in a particular function space –
are known, but it is usually better to construct the processes we need directly
on the function space on which they naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on results of
this type (separability, measurability, versions, regularization, ...) see e.g.
Doob’s classic book [D].

The continuous-time theory is technically much harder than the discrete-
time theory, for two reasons:
(i) questions of path-regularity arise in continuous time but not in discrete
time,
(ii) uncountable operations (like taking sup over an interval) arise in contin-
uous time. But measure theory is constructed using countable operations:
uncountable operations risk losing measurability.

Filtrations and Insider Trading
Recall that a filtration models an information flow. In our context, this

is the information flow on the basis of which market participants – traders,
investors etc. – make their decisions, and commit their funds and effort.
All this is information in the public domain – necessarily, as stock exchange
prices are publicly quoted. Again necessarily, many people are involved in
major business projects and decisions (an important example: mergers and
acquisitions, or M&A) involving publicly quoted companies. Frequently, this
involves price-sensitive information. People in this position are – rightly –
prohibited by law from profiting by it directly, by trading on their own ac-
count, in publicly quoted stocks but using private information. This is rightly
regarded as theft at the expense of the investing public.1 Instead, those in-
volved in M&A etc. should seek to benefit legitimately (and indirectly) –
enhanced career prospects, commission or fees, bonuses etc.

1The plot of the film Wall Street revolves round such a case, and is based on real life
– recommended!
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