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American puts (ctd).
5. Treat these values as ‘terminal node values’, and fill in the values one
time-step earlier by repeating Step 4 for this ‘reduced tree’.
6. Iterate. The value of the American put at time 0 is the value at the root -
the last node to be filled in. The ‘early-exercise region’ is the node set where
the early-exercise value is the higher; the rest is the ‘continuation region’.
Note. The above procedure is simple to describe and understand, and simple
to programme. It is laborious to implement numerically by hand, on exam-
ples big enough to be non-trivial. Numerical examples are worked through
in detail in [H1], 359-360 and [CR], 241-242.

Mathematically, the task remains of describing the continuation region -
the part of the tree where early exercise is not optimal. This is a classical
optimal stopping problem. No explicit solution is known (and presumably
there isn’t one). We will, however, connect the work above with that of III.7
[L13] on the Snell envelope. Consider the pricing of an American put, strike
price K, expiry N , in discrete time, with discount factor 1 + r per unit time
as earlier. Let Z = (Zn)Nn=0 be the payoff on exercising at time n. We want
to price Zn, by Un say (to conform to our earlier notation), so as to avoid
arbitrage; again, we work backwards in time. The recursive step is

Un−1 = max(Zn−1,
1

1 + r
E∗[Un|Fn−1]),

the first alternative on the right corresponding to early exercise, the second
to the discounted expectation under P ∗, as usual. Let Ũn = Un/(1 + r)n be
the discounted price of the American option. Then

Ũn−1 = max(Z̃n−1, E
∗[Ũn|Fn−1]) :

(Ũn) is the Snell envelope (III.7) of the discounted payoff process (Z̃n). So:
(i) a P ∗-supermartingale,
(ii) the smallest supermartingale dominating (Z̃n),
(iii) the solution of the optimal stopping problem for Z̃.
Note. One can use the Snell envelope to prove Merton’s theorem (equiva-
lence of American and European calls) without using arbitrage arguments.
For details see e.g. [BK, Th. 4.7.1 and Cor. 4.7.1].
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P -measure and P ∗− (or Q−) measure.
We use P and P ∗ in the above, as E and E∗ are convenient, but P and

Q when the emphasis is on Q, for brevity.
The measure P , the real (or real-world) probability measure, models the

uncertainty driving prices, which are indeed uncertain, thus allowing us to
bring mathematics to bear on financial problems. But P is difficult to get
at directly. By contrast, Q is more accessible: the market tells us about Q,
or more specifically, trading does. In addition, trading also tells us about
the volatility σ, via implied volatility, which we can infer from observing the
prices at which options are traded. So Q is certainly more accessible than P .
There is thus a sense in which it is Q, rather than P , which is the more real.

It is as well to bear all this in mind when looking at specific problems, par-
ticularly numerical ones. Now that we know the CRR binomial-tree model,
which gives us the Black-Scholes formula in discrete time (and hence also, by
the limiting argument above, the Black- Scholes formula in continuous time,
the main result of the course), we can recognise the ‘one-period, up or down’
model ($/SFr in I.8 L5, price of gold in Problems 5), though clearly artificial
and stylised, as a workable ‘building block’ of the whole theory. Because P
itself does not occur in the Black-Scholes formula(e), from a purely financial
point of view there is little need to try to construct more realistic, and so
more complicated, models of P . Instead, one can exploit what one can infer
about Q, which does occur in Black-Scholes, from seeing the prices at which
options trade.

From the economic point of view, it is the real world, the real economy,
and so the real probability measure P , that matters. The ‘Q-measure-eye
view of the world’ has a degree of artificiality, in so far as options do. One
can eat food, and needs to. One can’t eat options.

A fuller discussion of Q-measure involves Arrow-Debreu prices, equilibria
etc., but we omit this for lack of time.
Where we are.

The course splits neatly into three parts: Ch. I, II [L 1-10] on background,
Ch. III, IV [L 11-20] on discrete time, and Ch. V, VI [L 20-30] on continuous
time. We have already seen the main ideas – and proved nearly everything
seen so far. In V, VI we gain the tremendous power of Itô (stochastic) cal-
culus (calculus is our most powerful weapon, in mathematics and science!),
and the ability to work in continuous time. What we lose is the ability to
prove so much and to see what is happening so clearly and so concretely.
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Chapter V. STOCHASTIC PROCESSES IN CONTINUOUS TIME

§1. Brownian Motion.
The Scottish botanist Robert Brown observed pollen particles in suspen-

sion under a microscope in 1828 and 1829 (though this had been observed
before),1 and observed that they were in constant irregular motion.

In 1900 L. Bachelier considered Brownian motion a possible model for
stock-market prices:
BACHELIER, L. (1900): Théorie de la spéculation. Ann. Sci. Ecole Nor-
male Supérieure 17, 21-86
– the first time Brownian motion had been used to model financial or eco-
nomic phenomena, and before a mathematical theory had been developed.

In 1905 Albert Einstein considered Brownian motion as a model of parti-
cles in suspension, and used it to estimate Avogadro’s number (N ∼ 6×1023),
based on the diffusion coefficient D in the Einstein relation

varXt = Dt (t > 0).

In 1923 Norbert WIENER defined and constructed Brownian motion rig-
orously for the first time. The resulting stochastic process is often called the
Wiener process in his honour, and its probability measure (on path-space) is
called Wiener measure.

We define standard Brownian motion on R, BM or BM(R), to be a
stochastic process X = (Xt)t≥0 such that
1. X0 = 0,
2. X has independent increments: Xt+u−Xt is independent of σ(Xs : s ≤ t)
for u ≥ 0,
3. X has stationary increments: the law of Xt+u −Xt depends only on u,
4. X has Gaussian increments: Xt+u−Xt is normally distributed with mean
0 and variance u,

Xt+u −Xt ∼ N(0, u),

5. X has continuous paths: Xt is a continuous function of t, i.e. t 7→ Xt is
continuous in t.

For time t in a finite interval – [0, 1], say – we can use the following filtered
space: (i) Ω = C[0, 1], the space of all continuous functions on [0, 1]; (ii) the
points ω ∈ Ω are thus random functions, and we use the coordinate mappings:

1The Roman author Lucretius observed this phenomenon in the gaseous phase – dust
particles dancing in sunbeams – in antiquity: De rerum natura, c. 50 BC.
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Xt, or Xt(ω), = ωt; (iii) the filtration is given by Ft := σ(Xs : 0 ≤ s ≤ t),
F := F1; (iv) P is the measure on (Ω,F) with finite-dimensional distribu-
tions specified by the restriction that the increments Xt+u−Xt are stationary
independent Gaussian N(0, u).

Theorem (WIENER, 1923). Brownian motion exists.

The best way to prove this is by construction, and one that reveals some
properties. The result below is originally due to Paley, Wiener and Zygmund
(1933) and Lévy (1948), but is re-written in the modern language of wavelet
expansions. We omit the proof; for this, see e.g. [BK] 5.3.1, or SP L20-22.
The Haar system (Hn) = (Hn(.)) is a complete orthonormal system (cons)
of functions in L2[0, 1]. The Schauder system ∆n) is obtained by integrating
the Haar system. Consider the triangular function (or ‘tent function’)

∆(t) := 2t on [0,
1

2
), 2(1− t) on [

1

2
, 1], 0 else.

With ∆0(t) := t, ∆1(t) := ∆(t), define the nth Schauder function ∆n by

∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).

Note that ∆n has support [k/2j, (k + 1)/2j] (so is ‘localized’ on this dyadic
interval, which is small for n, j large). We see that∫ t

0

H(u)du =
1

2
∆(t),

and similarly ∫ t

0

Hn(u)du = λn∆n(t),

where λ0 = 1 and for n ≥ 1,

λn =
1

2
× 2−j/2 (n = 2j + k ≥ 1).

The Schauder system (∆n) is again a complete orthogonal system on L2[0, 1].
We can now formulate the next result; for proof, see the references above.
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