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A guiding principle that is often used here is that each economic agent
should seek to maximize his expected utility. This approach goes back to John
Von Neumann and Oscar Morgenstern in 1947 (in their classic book Theory
of games and economic behaviour, one of ‘the books of the last century’),
and earlier to F. P. Ramsey (1906-1930) in 1931 (posthumously).
Loss.

This is often looked at the other way round. One uses a loss function –
which can usually be thought of as a negative of utility. One then seeks to
minimize one’s expected loss.
Arbitrage.

An arbitrage opportunity (see I.6) is the possibility of extracting riskless
profit from the market. In an orderly market, this should not be possible
– at least, to a first approximation. For, an arbitrage opportunity is ‘free
money’; arbitrageurs will take this, in unlimited quantities – until the per-
son or institution being so exploited is driven from the market (bankrupt or
otherwise). In view of this, we make the assumption that the market is free
of arbitrage – is arbitrage-free, or has no arbitrage, NA.
Idealized markets.

Various assumptions are commonly made, in order to bring to bear the
tools of mathematics on the broad field of economic/financial activity. All
are useful, but valid to a first approximation only.
1. No arbitrage (NA).
2. No transaction costs or transaction taxes.
3. Same interest rates for borrowing and lending.
4. Unlimited liquidity (the ability to turn goods into money, and vice versa,
at the currently quoted prices).
5. No limitations of scale.
Markets satisfying such assumptions will be called perfect, or frictionless –
unrealistic in detail, but a useful first approximation in practice.

3. Brief history of Mathematical Finance
Mathematical Finance I: Markowitz and CAPM.

We deal with the history of put-call parity (I.7) below. It has ancient
roots, but entered the textbooks around 1904. Louis Bachelier (1870-1946)
first put mathematics to work on finance in his 1900 thesis Théorie de la

1



spéculation.1 Bachelier’s thesis is also remarkable as he used Brownian mo-
tion as a model for the driving noise in the price of a risky asset. This was
remarkable, as the relevant mathematics did not exist until 1923 (Wiener),
and later (Itô, stochastic calculus, 1944).

Until 1952, finance was more an art than a science. This changed with the
1952 thesis of Harry Markowitz (1927–), which introduced modern portfolio
theory. Markowitz gave us two key insights, both so ‘obvious’ that they are
all around us now. There is no point in investing in the stock market, which
is risky, when one can instead invest risklessly by putting money in the bank,
unless one expects the (rate of) return on the stock, µ, to be higher than the
riskless return r. The riskiness of the stock is measured by a parameter,
the volatility σ, which corresponds to the standard deviation (square root of
the variance) in a model of the risky stock price as a stochastic process (Ch.
III), while µ, r correspond to means, for risky and riskless assets respectively.
Markowitz’s first key insight is: think of risk and return together, not sepa-
rately. This leads to mean-variance analysis.

Next, the investor is free to choose which sector of the economy to invest
in. He is investing in the face of uncertainty (or risk), and in each sector
he chooses, prices may move against him. He should insure against this by
holding a balanced portfolio, of assets from a number of different sectors,
chosen so that they will tend to ‘move against each other’. Then, ‘what he
loses on the swings he will gain on the roundabouts’. This tendency to move
against each other is measured by negative correlation (the term comes from
Statistics). Markowitz’s second key insight is:
diversify, by holding a balanced portfolio with lots of negative correlation.

Markowitz’s theory was developed during the 1960s, in the capital asset
pricing model (CAPM – ‘cap-emm’), of Sharpe, Lintner and Mossin (William
Sharpe (1964), John Lintner (1965), Jan Mossin (1966); Jack Treynor (1961,
1962)). In CAPM, one looks at the excess of a particular stock over that
of the market overall, and the risk (as measured by volatility), and seeks to
obtain the maximum return for a given risk (or minimum risk for a given
return), which will hold on the efficient frontier. The relevant mathematics
involves Linear Regression in Statistics, and Linear Programming in Opera-
tional Research (OR).

1Mark Davis and Alison Etheridge: Louis Bachelier’s Theory of speculation: The ori-
gins of modern finance, translated and with a commentary; foreword by Paul A. Samuelson.
Princeton UP, 2006.
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Mathematical Finance II: Black, Scholes and Merton.
If one is contemplating buying a particular stock, intending to hold it

for a year say, what one would love to know is the price in a year’s time,
compared with the price today (one should discount this, as above). If the
(discounted) price goes up, one will be glad in a year’s time that one bought;
if it goes down, one will be sorry.

Suppose one’s Fairy Godmother appeared, and gave one a piece of paper,
which said that if one bought now, then in a year’s time if one was glad one
had done so one did buy, but if one was sorry, one didn’t. Such pieces of
paper do exist, and are called options – see Ch. IV, VI. Clearly such options
are valuable: they may lead to a profit, but cannot lead to a loss.
Question: What is an option worth?

Note that unless one can price options, they will not be traded (at least
in any quantity) – as with anything else.

Before 1973, the conventional wisdom was that this question had no an-
swer: it could have no answer, because the answer would necessarily depend
on the economic agent’s attitude to risk (that is, on his utility function, or
loss function – see above). It turns out that this view is incorrect. Subject
to the above assumptions of an idealized market (NA, etc.), one can price
options, according to the famous Black-Scholes formula of 1973 (Ch. IV,
VI – Fischer Black (1938-1995) and Myron Scholes (1941-)). They derived
their formula by showing that the option price satisfied a partial differential
equation (PDE), of hyperbolic type (a variant of the heat equation). In 1973
Robert Merton (1944-) gave a more direct approach. Meanwhile, 1973 was
also the year when the first exchange for buying and selling options opened,
the Chicago Board Options Exchange (CBOE).

To see why options can be priced, one only needs to know that the stan-
dard options are (under our idealized assumptions) redundant financial as-
sets: an option is equivalent to an appropriate combination of cash and stock.
Knowing how much cash, how much stock and the current stock price, one
can thus calculate the current option price by simple arithmetic.

In 1981, it was shown (by J. M. Harrison and S. R. Pliska) that the
right mathematical machinery to use in this area involves a particular type
of stochastic process – martingales – and a particular type of calculus, for
stochastic processes – Itô calculus (Kiyosi Itô (1915-2008)); see Ch. VI.

The subject of Mathematical Finance is by now well-established, and
rapidly growing in popularity in universities, in UK, US and elsewhere. This
is because of its relevance to the needs of the financial sector (or financial
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services industry) in the City of London (also Edinburgh) within UK, New
York in USA, Tokyo in Japan, Frankfurt in Germany, etc. This sector needs
technical people with good skills in mathematics, statistics, numerics etc.,
as well as economic insight and financial awareness, problem-solving skills
and ability to work in a team, etc. Such people are variously called financial
engineers, quantitative analysts (‘quants’) or ‘rocket scientists’.

Academically, the subject falls broadly in the interface between Eco-
nomics on the one hand and Mathematics on the other. In Economics, much
of the subject, again broadly speaking, relates to how prices are determined
– by the interplay between supply and demand, etc. By contrast, here in
this course we will usually take prices as given. Our task is to study how,
starting from the given prices, we can price other things related to them (op-
tions, and other financial derivatives – see below), and guard our operations
against unpredictable hazards (hedge – again, see below).

In this sense, Finance as a subject appears as a small – specialised, highly
mathematical – part of Economics (note that Finance here is not used quite
in the traditional non-technical sense). Risk is the key danger – the key con-
cept even – in finance; risk reflects uncertainty; uncertainty reflects chance
or probability. So it was clear that Probability Theory, a branch of Mathe-
matics related to Statistics, had to be relevant here. Quite how was shown
in 1981 by J. M. (Michael) Harrison (a probabilist) and David Kreps (an
economist), who simplified and generalized the Black-Scholes-Merton theory
by using the language of Probability Theory and Stochastic Processes – in
particular, martingales (and Itô calculus, again). These developments – and
what followed – constituted the ‘second revolution in mathematical finance’.
This is the subject-matter of this course. (We can cover the mathematics of
the developments outlined above. More recent developments are very impor-
tant, but go beyond a first undergraduate course – see e.g. our MSc in MF.)
On the mathematical side: you will learn a lot about stochastic processes,
martingales and Itô calculus, and see them put to use on financial problems.
On the practical side: the best proof of the relevance and usefulness of these
ideas is the explosive growth in volumes of trades in financial derivatives over
the last forty-odd years, and the corresponding explosive growth in employ-
ment opportunities (and salaries!) for those who understand what is going on.
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