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To find the (perfect-hedge) strategy for replicating this explicitly: write

c(n, x) := ΣN−n
j=0

(
N − n
j

)
p∗j(1− p∗)N−n−j(x(1 + a)j(1 + b)N−n−j −K)+.

Then c(n, x) is the undiscounted P ∗-expectation of the call at time n given
that Sn = x. This must be the value of the portfolio at time n if the strategy
H = (Hn) replicates the claim:

H0
n(1 + r)n +HnSn = c(n, Sn)

(here by previsibility H0
n and Hn are both functions of S0, · · · , Sn−1 only).

Now Sn = Sn−1Tn = Sn−1(1 + a) or Sn−1(1 + b), so:

H0
n(1 + r)n +HnSn−1(1 + a) = c(n, Sn−1(1 + a))

H0
n(1 + r)n +HnSn−1(1 + b) = c(n, Sn−1(1 + b)).

Subtract:

HnSn−1(b− a) = c(n, Sn−1(1 + b))− c(n, Sn−1(1 + a)).

So Hn in fact depends only on Sn−1, Hn = Hn(Sn−1) (by previsibility), and

Proposition. The perfect hedging strategy Hn replicating the European
call option above is given by

Hn = Hn(Sn−1) =
c(n, Sn−1(1 + b))− c(n, Sn−1(1 + a))

Sn−1(b− a)
.

Notice that the numerator is the difference of two values of c(n, x) with
the larger value of x in the first term (recall b > a). When the payoff function
c(n, x) is an increasing function of x, as for the European call option consid-
ered here, this is non-negative. In this case, the Proposition gives Hn ≥ 0:
the replicating strategy does not involve short-selling. We record this as:

Corollary. When the payoff function is a non-decreasing function of the
final asset price SN , the perfect-hedging strategy replicating the claim does
not involve short-selling of the risky asset.
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§6. Continuous-Time Limit of the Binomial Model.
Suppose now that we wish to price an option in continuous time with

initial stock price S0, strike price K and expiry T . We can use the work
above to give a discrete-time approximation, where N → ∞. We write
(temporarily) ρ ≥ 0 for the instantaneous interest rate in continuous time,
and define (again temporarily) r by

r := ρT/N : eρT = limN→∞(1 +
ρT

N
)N = limN→∞(1 + r)N .

Here r, which tends to zero as N →∞, represents the interest rate in discrete
time for the approximating binomial model.
For σ > 0 fixed (σ2 plays the role of a variance, corresponding in continuous
time to the volatility of the stock – below), define a, b (→ 0 as N →∞) by

log((1 + a)/(1 + r)) = −σ/
√
N, log((1 + b)/(1 + r)) = σ/

√
N.

We now have a sequence of binomial models, for each of which we can price
options as in §5. We shall show that the pricing formula converges as N →∞
to a limit. This is the famous Black-Scholes formula, the central result of
the course. We shall meet it later, and re-derive it, in continuous time, its
natural setting, in Ch. VI; see also e.g. [BK], 4.6.2.

Lemma. Let (XN
j )Nj=1 be iid with mean µN satisfying

NµN → µ (N →∞)

and variance σ2(1 + o(1))/N . If YN := ΣN
1 X

N
j , then YN converges in distri-

bution to normality:

YN → Y = N(µ, σ) (N →∞).

Proof. Use characteristic functions (CFs): since YN has mean and variance
as given, it also has second moment σ2(1 + o(1))/N , so has CF

φN(u) := E exp{iuYN} = ΠN
1 E exp{iuXN

j } = [E exp{iuXN
1 }]N

= (1 +
iuµ

N
− 1

2

σ2u2

N
+ o(

1

N
))N → exp{iuµ− 1

2
σ2u2} (N →∞),

the CF of the normal law N(µ, σ). Convergence of CFs implies convergence
in distribution by Lévy’s continuity theorem for CFs ([W], §18.1). //
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We can apply this to pricing the call option above:

C
(N)
0 = (1 +

ρT

N
)−NE∗[(S0Π

N
1 Tn −K)+]

= E∗[(S0 exp{YN} − (1 +
ρT

N
)−NK)+], (1)

where

YN :=
∑N

1
log(Tn/(1 + r)).

Since Tn = TNn above takes values 1 + b, 1 + a, XN
n := log(TNn /(1 + r)) takes

values log((1 + b)/(1 + r)), log((1 + a)/(1 + r)) = ±σ/
√
N (so has second

moment σ2/N). Its mean is

µN := log
(1 + b

1 + r

)
(1−p∗)+log

(1 + a

1 + r

)
p∗ =

σ√
N

(1−p∗)− σ√
N
p∗ = (1−2p∗)σ/

√
N

(we shall see below that 1 − 2p∗ = O(1/
√
N), so the Lemma will apply).

Now (recall r = ρT/N = O(1/N))

a = (1 + r)e−σ/
√
N − 1, b = (1 + r)eσ/

√
N − 1,

so a, b, r → 0 as N →∞, and

1− 2p∗ = 1− 2
(b− r)
(b− a)

= 1− 2
[(1 + r)eσ/

√
N − 1− r]

[(1 + r)(eσ/
√
N − e−σ/

√
N)]

= 1− 2
[eσ/

√
N − 1]

[eσ/
√
N − e−σ/

√
N ]
.

Now expand the two [· · ·] terms above by Taylor’s theorem: they give

σ√
N

(1 +
1

2

σ√
N

+ · · ·), 2σ√
N

(1 +
σ2

6N
+ · · ·).

So, cancelling σ/
√
N ,

1− 2p∗ = 1−
2(1 + 1

2
σ√
N

+ · · ·)
2(1 + σ2

6N
+ · · ·)

= −1

2

σ√
N

+O(1/N) :

NµN = N.
σ√
N
.(−1

2

σ√
N

+O(1/N))→ µ := −1

2
σ2 (N →∞).
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We now need to change notation:
(i) We replace the variance σ2 above by σ2T . So σ2 is the variance per unit
time (which is more suited to the work of Ch. V, VI in continuous time); the
standard deviation (SD) σ is called the volatility. It measures the variability
of the stock, so its riskiness, or its sensitivity to new information.
(ii) We replace ρ in the above by r. This is the standard notation for the
riskless interest rate in continuous time, to which we are now moving.

As usual, we write the standard normal density function as φ and distri-
bution function as Φ:

φ(x) :=
e−

1
2
x2

√
2π

, Φ(x) :=

∫ x

−∞
φ(u)du =

∫ x

−∞

e−
1
2
u2

√
2π

du.

Note that as φ is even, the left and right tails of Φ are equal:

φ(x) = φ(−x), so

∫ −x
−∞

φ(u)du =

∫ ∞
x

φ(u)du : Φ(−x) = 1−Φ(x).

Theorem (Black-Scholes formula (for calls), 1973). The price of the
European call option is

ct = StΦ(d+)−Ke−r(T−t)Φ(d−), (BS)

where St is the stock price at time t ∈ [0, T ], K is the strike price, r is the
riskless interest rate, σ is the volatility and

d± := [log(S/K) + (r ± 1

2
σ2)(T − t)]/σ

√
T − t : d+ = d− + σ

√
T − t.

For completeness, we state the corresponding Black-Scholes formula for
puts. The proofs of the two results are closely analogous, and one can derive
either from the other by put-call parity.

Theorem (Black-Scholes formula for puts, 1973). The price of the
corresponding put option is

pt = Ke−r(T−t)Φ(−d−)− StΦ(−d+). (BS − p)

The Black-Scholes formula is not perfect – indeed, Fischer Black himself
famously wrote a paper called The holes in Black-Scholes. But it is very
useful, as a benchmark and first approximation.
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