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Lecture 13 4.11.2016
Optional Stopping Theorem (continued).

The OST is important in many areas, such as sequential analysis in
statistics. We turn in the next section to related ideas specific to the gam-
bling/financial context.

Write XT
n := Xn∧T for the sequence (Xn) stopped at time T .

Proposition. (i) If (Xn) is adapted and T is a stopping-time, the stopped
sequence (Xn∧T ) is adapted.
(ii) If (Xn) is a martingale [supermartingale] and T is a stopping time, (XT

n )
is a martingale [supermartingale].

Proof. If φj := I{j ≤ T},

XT∧n = X0 +
n∑
1

φj(Xj −Xj−1).

Since {j ≤ T} is the complement of {T < j} = {T ≤ j − 1} ∈ Fj−1,
φj = I{j ≤ T} ∈ Fj−1, so (φn) is previsible. So (XT

n ) is adapted.
If (Xn) is a martingale, so is (XT

n ) as it is the martingale transform of
(Xn) by (φn). Since by previsibility of (φn)

E[XT∧n|Fn−1] = X0 +
n−1∑
1

φj(Xj −Xj−1) + φn(E[Xn|Fn−1]−Xn−1), i.e.

E[XT∧n|Fn−1]−XT∧(n−1) = φn(E[Xn|Fn−1]−Xn−1),

φn ≥ 0 shows that if (Xn) is a supermg [submg], so is (XT∧n). //

§7. The Snell Envelope and Optimal Stopping.

Definition. If Z = (Zn)Nn=0 is a sequence adapted to a filtration (Fn), the
sequence U = (Un)Nn=0 defined by{

UN := ZN ,
Un := max(Zn, E[Un+1|Fn]) (n ≤ N − 1)

is called the Snell envelope of Z (J. L. Snell in 1952; [N] Ch. 6). U is adapted,
i.e. Un ∈ Fn for all n. For, Z is adapted, so Zn ∈ Fn. Also E[Un+1|Fn] ∈ Fn
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(definition of conditional expectation). Combining, Un ∈ Fn, as required.
The Snell envelope (see IV.8 L20) is exactly the tool needed in pricing

American options. It is the least supermg majorant (also called the réduite
or reduced function – crucial in the mathematics of gambling):

Theorem. The Snell envelope (Un) of (Zn) is a supermartingale, and is the
smallest supermartingale dominating (Zn) (that is, with Un ≥ Zn for all n).

Proof. First, Un ≥ E[Un+1|Fn], so U is a supermartingale, and Un ≥ Zn, so
U dominates Z.

Next, let T = (Tn) be any other supermartingale dominating Z; we must
show T dominates U also. First, since UN = ZN and T dominates Z, TN ≥
UN . Assume inductively that Tn ≥ Un. Then

Tn−1 ≥ E[Tn|Fn−1] (as T is a supermartingale)

≥ E[Un|Fn−1] (by the induction hypothesis)

and
Tn−1 ≥ Zn−1 (as T dominates Z).

Combining,
Tn−1 ≥ max(Zn−1, E[Un|Fn−1]) = Un−1.

By backward induction, Tn ≥ Un for all n, as required. //

Note. It is no accident that we are using induction here backwards in time.
We will use the same method – also known as dynamic programming (DP) –
in Ch. IV below when we come to pricing American options.

Proposition. T0 := min{n ≥ 0 : Un = Zn} is a stopping time, and the
stopped sequence (UT0

n ) is a martingale.

We omit the proof (not hard, but fiddly – for details, see e.g. L13, 2014).
Because U is a supermartingale, we knew that stopping it would give a su-
permartingale, by the Proposition of §6. The point is that, using the special
properties of the Snell envelope, we actually get a martingale.

Write Tn,N for the set of stopping times taking values in {n, n+1, · · · , N}
(a finite set, as Ω is finite). We next see that the Snell envelope solves the
optimal stopping problem: it maximises the expectation of our final value of
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Z – the value when we choose to quit – conditional on our present (publicly
available) information. This is the best we can hope to do in practice (with-
out cheating – insider trading, etc.)

Theorem. T0 solves the optimal stopping problem for Z:

U0 = E[ZT0|F0] = max{E[ZT |F0] : T ∈ T0,N}.

Proof. As (UT0
n ) is a martingale (above),

U0 = UT0
0 (since 0 = 0 ∧ T0)

= E[UT0
N |F0] (by the martingale property)

= E[UT0|F0] (since T0 = T0 ∧N)

= E[ZT0|F0] (since UT0 = ZT0),

proving the first statement. Now for any stopping time T ∈ T0,N , since U is
a supermartingale (above), so is the stopped process (UT

n ) (§6). So

U0 = UT
0 (0 = 0 ∧ T , as above)

≥ E[UT
N |F0] ((UT

n ) a supermartingale)

= E[UT |F0] (T = T ∧N)

≥ E[ZT |F0] ((Un) dominates (Zn)),

and this completes the proof. //

The same argument, starting at time n rather than time 0, gives an ap-
parently more general version:

Theorem. If Tn := min{j ≥ n : Uj = Zj},

Un = E[ZTn|Fn] = sup{E[ZT |Fn] : T ∈ Tn,N}.

To recapitulate: as we are attempting to maximise our payoff by stopping
Z = (Zn) at the most advantageous time, the Theorem shows that Tn gives
the best stopping-time that is realistic: it maximises our expected payoff given
only information currently available (it is easy, but irrelevant, to maximise
things with hindsight!). We thus call T0 (or Tn, starting from time n) the
optimal stopping time for the problem.
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§8. Doob Decomposition.
Theorem. Let X = (Xn) be an adapted process with each Xn ∈ L1. Then
X has an (essentially unique) Doob decomposition

X = X0 +M + A : Xn = X0 +Mn + An ∀n (D)

with M a martingale null at zero, A a previsible process null at zero. If also
X is a submartingale (‘increasing on average’), A is increasing: An ≤ An+1

for all n, a.s.

The proof in discrete time is quite easy (see L13, 2014). It is hard in
continuous time – but more important there (see Ch. V: quadratic variation
(QV) and the Itô integral). This illustrates the contrasts between the theo-
ries of stochastic processes in discrete and continuous time.
§9. Examples.
1. Simple random walk. Recall the simple random walk: Sn :=

∑n
1 Xk,

where the Xn are independent tosses of a fair coin, taking values ±1 with
equal probability 1/2. We decide to bet until our net gain is first +1, then
quit – at time T , a stopping time. This has been analysed in detail; see e.g.
[GS] GRIMMETT, G. R. & STIRZAKER, D.: Probability and random pro-
cesses, OUP, 3rd ed., 2001 [2nd ed. 1992, 1st ed. 1982], §5.2:
(i) T <∞ a.s.: the gambler will certainly achieve a net gain of +1 eventually;
(ii) E[T ] = +∞: the mean waiting-time till this happens is infinity. So:
(iii) No bound can be imposed on the gambler’s maximum net loss before his
net gain first becomes +1.

At first sight, this looks like a foolproof way to make money out of noth-
ing: just bet till you get ahead (which happens eventually, by (i)), then quit.
But as a gambling strategy, this is hopelessly impractical: because of (ii),
you need unlimited time, and because of (iii), you need unlimited capital!

Notice that the Optional Stopping Theorem fails here: we start at zero,
so S0 = 0, E[S0] = 0; but ST = 1, so E[ST ] = 1. This shows two things:
(a) The Optional Stopping Theorem does indeed need conditions, as the con-
clusion may fail otherwise [none of the conditions (i) - (iii) in the OST are
satisfied in the example above],
(b) Any practical gambling (or trading) strategy needs to have some inte-
grability or boundedness restrictions to eliminate such theoretically possible
but practically ridiculous cases.
2. The doubling strategy. Similarly for the doubling strategy (§3).
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