m3f22l10tex
Lecture 10 27.11.2016
Kolmogorov's approach: conditional expectations via σ-fields
The problem with the approach of L9 (discrete and density cases) is that joint densities need not exist - do not exist, in general. One of the great contributions of Kolmogorov's classic book of 1933 was the realization that measure theory - specifically, the Radon-Nikodym theorem - provides a way to treat conditioning in general, without assuming that we are in the discrete case or density case above.

Recall that the probability triple is $(\Omega, \mathcal{F}, \mathcal{P})$. Take \mathcal{B} a sub- σ-field of \mathcal{F}, $\mathcal{B} \subset \mathcal{F}$ (recall: a σ-field represents information; the big σ-field \mathcal{F} represents 'knowing everything', the small σ-field \mathcal{B} represents 'knowing something').

Suppose that Y is a non-negative random variable whose expectation exists: $E[Y]<\infty$. The set-function

$$
Q(B):=\int_{B} Y d P \quad(B \in \mathcal{B})
$$

is non-negative (because Y is), σ-additive - because

$$
\int_{B} Y d P=\sum_{n} \int_{B_{n}} Y d P
$$

if $B=\cup_{n} B_{n}, B_{n}$ disjoint - and defined on the σ-algebra \mathcal{B}, so is a measure on \mathcal{B}. If $P(B)=0$, then $Q(B)=0$ also (the integral of anything over a null set is zero), so $Q \ll P$. By the Radon-Nikodym theorem (II.4), there exists a Radon-Nikodym derivative of Q with respect to P on \mathcal{B}, which is \mathcal{B}-measurable [in the Radon-Nikodym theorem as stated in II.4, we had \mathcal{F} in place of \mathcal{B}, and got a random variable, i.e. an \mathcal{F}-measurable function. Here, we just replace \mathcal{F} by \mathcal{B}.] Following Kolmogorov (1933), we call this RadonNikodym derivative the conditional expectation of Y given (or conditional on) $\mathcal{B}, E[Y \mid \mathcal{B}]$: this is \mathcal{B}-measurable, integrable, and satisfies

$$
\begin{equation*}
\int_{B} Y d P=\int_{B} E[Y \mid \mathcal{B}] d P \quad \forall B \in \mathcal{B} . \tag{*}
\end{equation*}
$$

In the general case, where Y is a random variable whose expectation exists $(E[|Y|]<\infty)$ but which can take values of both signs, decompose Y as

$$
Y=Y_{+}-Y_{-}
$$

and define $E[Y \mid \mathcal{B}]$ by linearity as

$$
E[Y \mid \mathcal{B}]:=E\left[Y_{+} \mid \mathcal{B}\right]-E\left[Y_{-} \mid \mathcal{B}\right] .
$$

Suppose now that \mathcal{B} is the σ-field generated by a random variable X : $\mathcal{B}=\sigma(X)$ (so \mathcal{B} represents the information contained in X, or what we know when we know X). Then $E[Y \mid \mathcal{B}]=E[Y \mid \sigma(X)]$, which is written more simply as $E[Y \mid X]$. Its defining property is

$$
\int_{B} Y d P=\int_{B} E[Y \mid X] d P \quad \forall B \in \sigma(X) .
$$

Similarly, if $\mathcal{B}=\sigma\left(X_{1}, \cdots, X_{n}\right)$ (\mathcal{B} is the information in $\left(X_{1}, \cdots, X_{n}\right)$) we write $E\left[Y \mid \sigma\left(X_{1}, \cdots, X_{n}\right]\right.$ as $E\left[Y \mid X_{1}, \cdots, X_{n}\right]$:

$$
\int_{B} Y d P=\int_{B} E\left[Y \mid X_{1}, \cdots, X_{n}\right] d P \quad \forall B \in \sigma\left(X_{1}, \cdots, X_{n}\right) .
$$

Note. 1. To check that something is a conditional expectation: we have to check that it integrates the right way over the right sets [i.e., as in $\left(^{*}\right)$].
2. From (*): if two things integrate the same way over all sets $B \in \mathcal{B}$, they have the same conditional expectation given \mathcal{B}.
3. For notational convenience, we use $E[Y \mid \mathcal{B}]$ and $E_{\mathcal{B}} Y$ interchangeably.
4. The conditional expectation thus defined coincides with any we may have already encountered - in regression or multivariate analysis, for example. However, this may not be immediately obvious. The conditional expectation defined above - via σ-fields and the Radon-Nikodym theorem - is rightly called by Williams ([W], p.84) 'the central definition of modern probability'. It may take a little getting used to. As with all important but non-obvious definitions, it proves its worth in action: see II. 6 below for properties of conditional expectations, and Chapter III for stochastic processes, particularly martingales [defined in terms of conditional expectations].

§6. Properties of Conditional Expectations.

1. $\mathcal{B}=\{\emptyset, \Omega\}$. Here \mathcal{B} is the smallest possible σ-field (any σ-field of subsets of Ω contains \emptyset and Ω), and represents 'knowing nothing'.

$$
E[Y \mid\{\emptyset, \Omega\}]=E Y
$$

Proof. We have to check $\left(^{*}\right)$ of $\S 5$ for $B=\emptyset$ and $B=\Omega$. For $B=\emptyset$ both sides are zero; for $B=\Omega$ both sides are $E Y$. //
2. $\mathcal{B}=\mathcal{F}$. Here \mathcal{B} is the largest possible σ-field: 'knowing everything'.

$$
E[Y \mid \mathcal{F}]=Y \quad P-\text { a.s. }
$$

Proof. We have to check $\left(^{*}\right)$ for all sets $B \in \mathcal{F}$. The only integrand that integrates like Y over all sets is Y itself, or a function agreeing with Y except on a set of measure zero.
Note. When we condition on \mathcal{F} ('knowing everything'), we know Y (because we know everything). There is thus no uncertainty left in Y to average out, so taking the conditional expectation (averaging out remaining randomness) has no effect, and leaves Y unaltered.
3. If Y is \mathcal{B}-measurable, $E[Y \mid \mathcal{B}]=Y \quad P$ - a.s.

Proof. Recall that Y is always \mathcal{F}-measurable (this is the definition of Y being a random variable). For $\mathcal{B} \subset \mathcal{F}, Y$ may not be \mathcal{B}-measurable, but if it is, the proof above applies with \mathcal{B} in place of \mathcal{F}.
Note. If Y is \mathcal{B}-measurable, when we are given \mathcal{B} (that is, when we condition on it), we know Y. That makes Y effectively a constant, and when we take the expectation of a constant, we get the same constant.
4. If Y is \mathcal{B}-measurable, $E[Y Z \mid \mathcal{B}]=Y E[Z \mid \mathcal{B}] \quad P-$ a.s.

We refer for the proof of this to [W], p.90, proof of (j).
Note. Williams calls this property 'taking out what is known'. To remember it: if Y is \mathcal{B}-measurable, then given \mathcal{B} we know Y, so Y is effectively a constant, so can be taken out through the integration signs in $\left(^{*}\right)$, which is what we have to check (with $Y Z$ in place of Y).
5. If $\mathcal{C} \subset \mathcal{B}, E[E[Y \mid \mathcal{B}] \mid \mathcal{C}]=E[Y \mid \mathcal{C}] \quad$ a.s.

Proof. $E_{\mathcal{C}} E_{\mathcal{B}} Y$ is \mathcal{C}-measurable, and for $C \in \mathcal{C} \subset \mathcal{B}$,

$$
\begin{gathered}
\int_{C} E_{\mathcal{C}}\left[E_{\mathcal{B}} Y\right] d P=\int_{C} E_{\mathcal{B}} Y d P \quad \text { (definition of } E_{\mathcal{C}} \text { as } C \in \mathcal{C} \text {) } \\
=\int_{C} Y d P \quad\left(\text { definition of } E_{\mathcal{B}} \text { as } C \in \mathcal{B}\right) .
\end{gathered}
$$

So $E_{\mathcal{C}}\left[E_{\mathcal{B}} Y\right]$ satisfies the defining relation for $E_{\mathcal{C}} Y$. Being also \mathcal{C}-measurable, it is $E_{\mathcal{C}} Y$ (a.s.). //

5'. If $\mathcal{C} \subset \mathcal{B}, E[E[Y \mid \mathcal{C}] \mid \mathcal{B}]=E[Y \mid \mathcal{C}] \quad$ a.s.
Proof. $E[Y \mid \mathcal{C}]$ is \mathcal{C}-measurable, so \mathcal{B}-measurable as $\mathcal{C} \subset \mathcal{B}$, so $E[\mid \mathcal{B}]$ has no effect on it, by 3 .
Note. 5, 5' are the two forms of the iterated conditional expectations property. When conditioning on two σ-fields, one larger (finer), one smaller (coarser), the coarser rubs out the effect of the finer, either way round. This is also called the coarse-averaging property, or (Williams [W]) the tower property.
6. Conditional Mean Formula. $E[E[Y \mid \mathcal{B}]]=E Y \quad P-a . s$.

Proof. Take $\mathcal{C}=\{\emptyset, \Omega\}$ in 5 and use 1. //
Example. Check this for the bivariate normal distribution considered above. Note. Compare this with the Conditional Variance Formula of Statistics: see e.g. SMF, IV.6, Day 9.
7. Role of independence. If Y is independent of \mathcal{B},

$$
E[Y \mid \mathcal{B}]=E[Y] \quad \text { a.s. }
$$

Proof. See [W], p.88, 90, property (k).
Note. In the elementary definition $P(A \mid B):=P(A \cap B) / P(B)$ (if $P(B)>0)$, if A and B are independent (that is, if $P(A \cap B)=P(A) \cdot P(B)$), then $P(A \mid B)=P(A)$: conditioning on something independent has no effect. One would expect this familiar and elementary fact to hold in this more general situation also. It does - and the proof of this rests on the proof above.

Projections. In Property 5 (tower property), take $\mathcal{B}=\mathcal{C}$:

$$
E[E[X \mid \mathcal{C}] \mid \mathcal{C}]=E[X \mid \mathcal{C}] .
$$

This says that the operation of taking conditional expectation given a sub- σ field \mathcal{C} is idempotent - doing it twice is the same as doing it once. Also, taking conditional expectation is a linear operation (it is defined via an integral, and integration is linear). Recall from Linear Algebra that we have met such idempotent linear operations before. They are the projections. (Example: $(x, y, z) \mapsto(x, y, 0)$ projects from 3-dimensional space onto the (x, y)-plane.) This view of conditional expectation as projection is useful and powerful; see e.g. [BK], [BF] or J. Neveu, Discrete-parameter martingales (NorthHolland, 1975), I.2. It is particularly useful when one has not yet got used to conditional expectation defined measure-theoretically as above, as it gives us an alternative (and perhaps more familiar) way to think.

