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Interpretation.

Think of σ(X) as representing what we know when we know X, or in
other words the information contained in X (or in knowledge of X). This is
from the following result, due to J. L. DOOB (1910-2004), which we quote:

σ(X) ⊆ σ(Y ) iff X = g(Y )

for some measurable function g. For, knowing Y means we know X := g(Y )
– but not vice-versa, unless the function g is one-to-one [injective], when the
inverse function g−1 exists, and we can go back via Y = g−1(X).
Expectation.

A measure (II.1) determines an integral (II.2). A probability measure P ,
being a special kind of measure [a measure of total mass one] determines a
special kind of integral, called an expectation.
Definition. The expectation E of a random variable X on (Ω,F , P ) is
defined by

EX :=

∫
Ω

X dP, or

∫
Ω

X(ω) dP (ω).

If X is real-valued, say, with distribution function F , recall that EX is
defined in your first course on probability by

EX :=

∫
xf(x) dx if X has a density f

or if X is discrete, taking values Xn, (n = 1, 2, . . .) with probability function
f(xn)(≥ 0), (

∑
xnf(xn) = 1),

EX :=
∑

xnf(xn).

These two formulae are the special cases (for the density and discrete cases)
of the general formula

EX :=

∫ ∞

−∞
x dF (x)

where the integral on the right is a Lebesgue-Stieltjes integral. This in turn
agrees with the definition above, since if F is the distribution function of X,∫

Ω

X dP =

∫ ∞

−∞
x dF (x)
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follows by the change of variable formula for the measure-theoretic integral,
on applying the map X : Ω → R (we quote this: see any book on Measure
Theory).
Glossary. We now have two parallel languages, measure-theoretic and prob-
abilistic:

Measure Probability
Integral Expectation
Measurable set Event
Measurable function Random variable
almost-everywhere (a.e.) almost-surely (a.s.)

§4. Equivalent Measures and Radon-Nikodym derivatives.
Given two measures P and Q defined on the same σ-field F , we say that

P is absolutely continuous with respect to Q, written

P << Q,

if P (A) = 0 whenever Q(A) = 0, A ∈ F . We quote from measure theory the
vitally important Radon-Nikodym theorem: P << Q iff there exists a (F -)
measurable function f such that

P (A) =

∫
A

f dQ ∀A ∈ F

(note that since the integral of anything over a null set is zero, any P so
representable is certainly absolutely continuous with respect to Q – the point
is that the converse holds). Since P (A) =

∫
A
dP , this says that

∫
A
dP =∫

A
f dQ for all A ∈ F . By analogy with the chain rule of ordinary calculus,

we write dP/dQ for f ; then∫
A

dP =

∫
A

dP

dQ
dQ ∀A ∈ F .

Symbolically,

if P << Q, dP =
dP

dQ
dQ.

The measurable function (= random variable) dP/dQ is called the Radon-
Nikodym derivative (RN-derivative) of P with respect to Q.

If P << Q and also Q << P , we call P and Q equivalent measures,
written P ∼ Q. Then dP/dQ and dQ/dP both exist, and

dP

dQ
= 1

/dQ

dP
.
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For P ∼ Q, P (A) = 0 iff Q(A) = 0: P and Q have the same null sets. Taking
negations: P ∼ Q iff P,Q have the same sets of positive measure. Taking
complements: P ∼ Q iff P,Q have the same sets of probability one [the same
a.s. sets]. Thus the following are equivalent: P ∼ Q iff P , Q have the same
null sets/the same a.s. sets/the same sets of positive measure.
Note. Far from being an abstract theoretical result, the Radon-Nikodym
theorem is of key practical importance, in two ways:
(a) It is the key to the concept of conditioning (”using what we know” – §5,
§6 below), which is of central importance throughout,
(b) The concept of equivalent measures is central to the key idea of math-
ematical finance, risk-neutrality, and hence to its main results, the Black-
Scholes formula, the Fundamental Theorem of Asset Pricing (FTAP), etc.
The key to all this is that prices should be the discounted expected values
under the equivalent martingale measure. Thus equivalent measures, and
the operation of change of measure, are of central economic and financial
importance. We shall return to this later in connection with the main math-
ematical result on change of measure, Girsanov’s theorem (VI.4).

Recall that we first met the phrase ‘equivalent martingale measure’ in I.5
above. We now know what a measure is, and what equivalent measures are;
we will learn about martingales in III.3 below.
§5.Conditional Expectations.

Suppose that X is a random variable, whose expectation exists (i.e.
E[|X|] < ∞, or X ∈ L1). Then E[X], the expectation of X, is a scalar
(a number) – non-random. The expectation operator E averages out all the
randomness in X, to give its mean (a weighted average of the possible value
of X, weighted according to their probability, in the discrete case).

It often happens that we have partial information about X – for instance,
we may know the value of a random variable Y which is associated with X,
i.e. carries information about X. We may want to average out over the
remaining randomness. This is an expectation conditional on our partial in-
formation, or more briefly a conditional expectation.

This idea will be familiar already from elementary courses, in two cases
(see e.g. [BF]):
1. Discrete case, based on the formula

P (A|B) := P (A ∩B)/P (B) if P (B) > 0.

If X takes values x1, · · · , xm with probabilities f1(xi) > 0, Y takes values
y1, · · · , yn with probabilities f2(yj) > 0, (X, Y ) takes values (xi, yj) with
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probabilities f(xi, yj) > 0, then
(i) f1(xi) =

∑
j f(xi, yj), f2(yj) =

∑
i f(xi, yj),

(ii) P (Y = yj|X = xi) = P (X = xi, Y = yj)/P (X = xi) = f(xi, yj)/f1(xi)

= f(xi, yj)/
∑
j

f(xi, yj).

This is the conditional distribution of Y given X = xi, written

fY |X(yj|xi) = f(xi, yj)/f1(xi) = f(xi, yj)/
∑
j

f(xi, yj).

Its expectation is

E[Y |X = xi] =
∑
j

yjfY |X(yj|xi)

=
∑
j

yjf(xi, yj)/
∑
j

f(xi, yj).

But this approach only works when the events on which we condition have
positive probability, which only happens in the discrete case.
2. Density case. If (X,Y ) has density f(x, y),

X has density f1(x) :=

∫ ∞

−∞
f(x, y)dy, Y has density f2(y) :=

∫ ∞

−∞
f(x, y)dx.

We define the conditional density of Y given X = x by the continuous ana-
logue of the discrete formula above:

fY |X(y|x) := f(x, y)/f1(x) = f(x, y)/

∫ ∞

−∞
f(x, y)dy.

Its expectation is

E[Y |X = x] =

∫ ∞

−∞
yfY |X(y|x)dy =

∫ ∞

−∞
yf(x, y)dy/

∫ ∞

−∞
f(x, y)dy.

Example: Bivariate normal distribution, N(µ1, µ2, σ
2
1, σ

2
2, ρ).

E[Y |X = x] = µ2 + ρ
σ2

σ1

(x− µ1),

the familiar regression line of statistics (linear model: [BF, Ch. 1]).
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