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Chapter II. PROBABILITY BACKGROUND.

1. Measure
The language of option pricing involves that of probability, which in turn

involves that of measure theory. This originated with Henri LEBESGUE
(1875-1941), in his 1902 thesis, ‘Intégrale, longueur, aire’. We begin with
the simplest case.
Length. The length µ(I) of an interval I = (a, b), [a, b], [a, b) or (a, b] should
be b − a: µ(I) = b − a. The length of the disjoint union I =

∪n
r=1 Ir of

intervals Ir should be the sum of their lengths:

µ

(
n∪

r=1

Ir

)
=

n∑
r=1

µ(Ir) (finite additivity).

Consider now an infinite sequence I1, I2, . . .(ad infinitum) of disjoint intervals.
Letting n → ∞ suggests that length should again be additive over disjoint
intervals:

µ

(
∞∪
r=1

Ir

)
=

∞∑
r=1

µ(Ir) (countable additivity).

For I an interval, A a subset of length µ(A), the length of the complement
I \ A := I ∩ Ac of A in I should be

µ(I \ A) = µ(I)− µ(A) (complementation).

If A ⊆ B and B has length µ(B) = 0, then A should have length 0 also:

A ⊆ B & µ(B) = 0 ⇒ µ(A) = 0 (completeness).

Let F be the smallest class of sets A ⊂ R containing the intervals, closed
under countable disjoint unions and complements, and complete (containing
all subsets of sets of length 0 as sets of length 0). The above suggests – what
Lebesgue showed – that length can be sensibly defined on the sets F on the
line, but on no others. There are others – but they are hard to construct
(in technical language: the Axiom of Choice (AC), or some variant of it such

1



as Zorn’s Lemma, is needed to demonstrate the existence of non-measurable
sets – but all such proofs are highly non-constructive). So: some but not all
subsets of the line have a length.1 These are called the Lebesgue-measurable
sets, and form the class F described above; length, defined on F is called
Lebesgue measure µ (on the real line, R).
Area. The area of a rectangle R = (a1, b1)× (a2, b2) – with or without any of
its perimeter included – should be µ(R) = (b1 − a1)× (b2 − a2). The area of
a finite or countably infinite union of disjoint rectangles should be the sum
of their areas:

µ

(
∞∪
n=1

Rn

)
=

∞∑
n=1

µ(Rn) (countable additivity).

If R is a rectangle and A ⊆ R with area µ(A), the area of the complement
R \ A should be

µ(R \ A) = µ(R)− µ(A) (complementation).

If B ⊆ A and A has area 0, B should have area 0:

A ⊆ B & µ(B) = 0 ⇒ µ(A) = 0 (completeness).

Let F be the smallest class of sets, containing the rectangles, closed under
finite or countably infinite unions, closed under complements, and complete
(containing all subsets of sets of area 0 as sets of area 0). Lebesgue showed
that area can be sensibly defined on the sets in F and no others. The sets
A ∈ F are called the Lebesgue-measurable sets in the plane R2; area, defined
on F , is called Lebesgue measure in the plane. So: some but not all sets in
the plane have an area.
Volume. Similarly in three-dimensional space R3, starting with the volume
of a cuboid C = (a1, b1)× (a2, b2)× (a3, b3) as

µ(C) = (b1 − a1) · (b2 − a2) · (b3 − a3).

Euclidean space. Similarly in k-dimensional Euclidean space Rk. We start
with

µ

(
k∏

i=1

(ai, bi

)
=

k∏
i=1

(bi − ai),

1There are alternatives to AC, under which all sets are measurable. So it is not a
question of whether AC is true or not, but of what axioms of Set Theory we assume.
Background: Model Theory in Mathematical Logic, etc.
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and obtain the class F of Lebesgue-measurable sets in Rk, and Lebesgue mea-
sure µ in Rk.
Probability.

The unit cube [0, 1]k in Rk has Lebesgue measure 1. It can be used to
model the uniform distribution (density f(x) = 1 if x ∈ [0, 1]k, 0 otherwise),
with probability = length/area/volume if k = 1/2/3.
Note. If a property holds everywhere except on a set of measure zero, we
say it holds almost everywhere (a.e.) [French: presque partout, p.p.; German:
fast überall, f.u.]. If it holds everywhere except on a set of probability zero,
we say it holds almost surely (a.s.) [or, with probability one].

2 Integral.
1. Indicators. We start in dimension k = 1 for simplicity , and consider the
simplest calculus formula

∫ b

a
1 dx = b− a. We rewrite this as

I(f) :=

∫ ∞

−∞
f(x) dx = b− a if f(x) = I[a,b)(x),

the indicator function of [a, b] (1 in [a, b], 0 outside it), and similarly for the
other three choices about end-points.
2. Simple functions. A function f is called simple if it is a finite linear combi-
nation of indicators: f =

∑n
i=1 cifi for constants ci and indicator functions fi

of intervals Ii. One then extends the definition of the integral from indicator
functions to simple functions by linearity:

I

(
n∑

i=1

cifi

)
:=

n∑
i=1

ciI(fi)

for constants ci and indicators fi of intervals Ii.
3. Non-negative measurable functions. Call f a (Lebesgue-) measurable func-
tion if, for all c, the sets {x : f(x) ≤ c} is a Lebesgue-measurable set (§1).
If f is a non-negative measurable function, we quote that it is possible to
construct f as the increasing limit of a sequence of simple functions fn:

fn(x) ↑ f(x) for all x ∈ R (n → ∞), fn simple.

We then define the integral of f as

I(f) := lim
n→∞

I(fn) (≤ ∞)
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(we quote that this does indeed define I(f): the value does not depend on
which approximating sequence (fn) we use). Since fn increases in n, so does
I(fn) (the integral is order-preserving), so either I(fn) increases to a finite
limit, or diverges to ∞. In the first case, we say f is (Lebesgue-) integrable
with (Lebesgue-) integral I(f) = lim I(fn), or

∫
f(x) dx = lim

∫
fn(x) dx, or

simply
∫
f = lim

∫
fn.

4. Measurable functions. If f is a measurable function that may change sign,
we split it into its positive and negative parts, f±:

f+(x) := max(f(x), 0), f−(x) := −min(f(x), 0),
f(x) = f+(x)− f−(x), |f(x)| = f+(x) + f−(x)

If both f+ and f− are integrable, we say that f is too, and define∫
f :=

∫
f+ −

∫
f−.

Then, in particular, |f | is also integrable, and∫
|f | =

∫
f+ +

∫
f−.

Note. The Lebesgue integral is, by construction, an absolute integral: f is
integrable iff |f | is integrable. Thus, for instance, the well-known formula∫ ∞

0

sin x

x
dx =

π

2

has no meaning for Lebesgue integrals, since
∫∞
1

| sinx|
x

dx diverges to +∞
like

∫∞
1

1
x
dx. It has to be replaced by the limit relation∫ X

0

sinx

x
dx → π

2
(X → ∞).

The class of (Lebesgue-) integrable functions f on R is written L(R) or (for
reasons explained below) L1(R) – abbreviated to L1 or L.
Higher dimensions. In Rk, we start instead from k-dimensional boxes. If f is
the indicator of a box B = [a1, b1]×[a2, b2]×· · ·×[ak, bk],

∫
f :=

∏k
i=1(bi−ai).

We then extend to simple functions by linearity, to non-negative measurable
functions by taking increasing limits, and to measurable functions by splitting
into positive and negative parts.
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