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§4. Girsanov’s Theorem

Consider first ([KS], §3.5) independentN(0, 1) random variables Z1, · · · , Zn

on (Ω,F ,P). Given a vector µ = (µ1, · · · , µn), consider a new probability
measure P̃ on (Ω,F) defined by

P̃ (dω) = exp{Σn
1µiZi(ω)−

1

2
Σn

1µ
2
i }.P (dω).

This is a positive measure as exp{.} > 0, and integrates to 1 as
∫
exp{µiZi}dP =

exp{1
2
µ2
i } (normal MGF), so is a probability measure. It is also equivalent

to P (has the same null sets – actually, the only null set are Lebesgue-null
sets, in each case), again as the exponential term is positive. Also

P̃ (Zi ∈ dzi, i = 1, · · · , n) = exp{Σn
1µizi−

1

2
Σn

1µ
2
i }.P (Zi ∈ dzi, i = 1, · · · , n)

(Zi ∈ dzi means zi ≤ Zi ≤ zi + dzi, so here Zi = zi to first order)

= (2π)−
1
2
n exp{Σµizi −

1

2
Σµ2

i −
1

2
Σz2i }Πdzi

= (2π)−
1
2
n exp{−1

2
Σ(zi − µi)

2}dz1 · · · dzn.

This says that if the Zi are independent N(0, 1) under P , they are indepen-
dent N(µi, 1) under P̃ . Thus the effect of the change of measure P 7→ P̃ ,
from the original measure P to the equivalent measure P̃ , is to change the
mean, from 0 = (0, · · · , 0) to µ = (µ1, · · · , µn).

This result extends to infinitely many dimensions – i.e., stochastic pro-
cesses. We quote (Igor Vladimirovich GIRSANOV (1934-67) in 1960):

Theorem (Girsanov’s Theorem). Let (µt : 0 ≤ t ≤ T ) be an adapted

process with
∫ T

0
µ2
tdt < ∞ a.s. such that the process L with

Lt := exp{
∫ t

0

µsdWs −
1

2

∫ t

0

µ2
sds} (0 ≤ t ≤ T )

is a martingale. Then, under the probability PL with density LT relative to
P , the process W ∗ defined by

W ∗
t := Wt −

∫ t

0

µsds, (0 ≤ t ≤ T )
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is a standard Brownian motion (so W is BM +
∫ t

0
µsds).

Here, Lt is the Radon-Nikodym derivative of PL w.r.t. P on the σ-algebra
Ft. In particular, for µt ≡ µ, change of measure by introducing the RN
derivative exp{µWt − 1

2
µ2} corresponds to a change of drift from 0 to µ.

The martingale condition in Girsanov’s theorem is satisfied in the case µt

constant, from the SDE for GBM (VI.1, L25).
Girsanov’s Theorem (or the Cameron-Martin-Girsanov Theorem) is for-

mulated in varying degrees of generality, and proved, in [KS, §3.5], [RY, VIII].
The Sharpe ratio.

There is no point in investing in a risky asset with mean return rate µ,
when cash is a riskless asset with return rate r, unless µ > r. The excess
return µ − r (the investor’s reward for taking a risk) is compared with the
risk, as measured by the volatility σ, via the Sharpe ratio

θ := (µ− r)/σ,

also known as the market price of risk. This is important, both here (see
below), in CAPM (I.3, L2), and in asset allocation decisions.

Consider now the Black-Scholes model, with dynamics

dBt = rBtdt, dSt = µStdt+ σStdWt.

The discounted asset prices S̃t := e−rtSt have dynamics given, as before, by

dS̃t = −re−rtStdt+ e−rtdSt

= −rS̃tdt+ µS̃tdt+ σS̃tdWt

= (µ− r)S̃tdt+ σS̃tdWt

= σS̃t(θdt+ dWt).

Now the drift – θdt – term here prevents S̃t being a martingale; the noise
– dWt – term gives a stochastic integral, a martingale. Girsanov’s theorem
suggests the change of measure P 7→ P ∗ to the EMM (or risk-neutral mea-
sure) – µ 7→ r, θ 7→ 0 – making the discounted asset price a martingale. This
(i) gives directly the continuous-time version of the FTAP/RNVF: to price
assets, take expectations of discounted prices under the risk-neutral measure
(see below for completeness and uniqueness of EMM and prices);
(ii) allows a probabilistic treatment of the Black-Scholes model, avoiding the
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detour via PDEs of §2, §3.

Theorem (Representation Theorem for Brownian Martingales). Let
(Mt : 0 ≤ t ≤ T ) be a square-integrable martingale with respect to the
Brownian filtration (Ft). Then there exists an adapted process H = (Ht :
0 ≤ t ≤ T ) with E

∫
H2

sds < ∞ such that

Mt = M0 +

∫ t

0

HsdWs, 0 ≤ t ≤ T.

That is, all Brownian martingales may be represented as stochastic integrals
with respect to Brownian motion.

We refer to, e.g., [KS], [RY] for proof.
The economic relevance of the Representation Theorem is that it shows

(see e.g. [KS, I.6], and below) that the Black-Scholes model is complete –
that is, that EMMs are unique, and so that Black-Scholes prices are unique
(we know this already, from FTAP/RNVF, VI.3 L28). Mathematically, the
result is purely a consequence of properties of the Brownian filtration. The
desirable mathematical properties of BM are thus seen to have hidden within
them desirable economic and financial consequences of real practical value.

To summarise the basic case (µ and σ constant) in a nutshell:
(i) Dynamics are given by GBM , dSt = µSdt+ σSdWt.
(ii) Discount: dS̃t = (µ− r)S̃dt+ σS̃dWt = σS̃(θdt+ dWt).
(iii) Use Girsanov’s Theorem to change µ to r, so θ := (µ− r)/σ to 0: under
P ∗, dS̃t = σS̃dWt.
(iv) Integrate: the RHS gives a P ∗-martingale, so has constantE∗-expectation.
(v) Hence the RNVF (VI.3, L28).
(vi) Hence the BS formula, by integration (L28), for European calls and puts.
Hedging.

To find a hedging strategy H = (H0
t , Ht) (H

0
t for cash, Ht for stock) that

replicates the value process V = (Vt), itself given by RNVF (VI.3 L28):

Vt = H0
t +HtSt = E∗[e−r(T−t)h|Ft].

Now
Mt := E∗[e−rTh|Ft]

is a martingale (indeed, a uniformly integrable mg: IV.4 L12, V.2 L21) under
the filtration Ft, that of the driving BM in (GBM) (VI.1 L25, VI.2 L26),
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and the filtration is unchanged by the Girsanov change of measure (we quote
this). So by the Representation Theorem for Brownian Martingales, there is
some adapted process K = (Kt) with

Mt = M0 +

∫ t

0

KsdWs (t ∈ [0, T ]).

Take
Ht := Kt/(σS̃t), H0

t := Mt −HtS̃t.

Then

dMt = KtdWt =
Kt

σS̃t

.σS̃tdWt = HtdS̃t,

and the strategy given by K is self-financing, by VI.2 L26. This is of limited
practical value:
(a) the Representation Th. does not give K = (Kt) explicitly – it is merely
an existence proof;
(b) we already know that, as Brownian paths have infinite variation, exact
hedging in the Black-Scholes model is too rough to be practically possible.
Comments.
1. Calculation. When solutions have to be found numerically (as is the case
in general – though not for some important special cases such as European
calls and puts, as in BS), we again have a choice of
(i) analytic methods: numerical solution of a PDE,
(ii) probabilistic methods: evaluation, by RNVF, of an expectation.
A comparison of convenience between these two methods depends on one’s
experience of numerical computation and the software available.
2. Discrete and continuous time. One often has a choice between discrete
and continuous time. For discrete time, we have proved everything; for con-
tinuous time, we have had to quote the hard proofs. Note that in continuous
time we can use calculus – PDEs, SDEs, Itô calculus, etc. In discrete time
we use instead the calculus of finite differences.
3. American options. The situation here is much as in discrete time. It is im-
portant: most options traded are American. There are no explicit formulae;
in continuous time one has to discretise to reduce to the discrete-time case,
and solve by backward recursion as in Ch. IV. The value of the American
option splits, into two components: the intrinsic value (European value),
and the early-exercise premium. The relevant mathematics here involves the
Riesz decomposition of Potential Theory.
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