m3a22l28tex
Lecture 28 14.12.2015
Taking existence of a unique solution for granted for the moment, consider a smooth function $F\left(s, X_{s}\right)$ of it. By Itô's Lemma,

$$
d F=F_{1} d s+F_{2} d X+\frac{1}{2} F_{22}(d X)^{2}
$$

and as $(d X)^{2}=\left(\mu d s+\sigma d W_{s}\right)^{2}=\sigma^{2}\left(d W_{s}\right)^{2}=\sigma^{2} d s$, this is
$d F=F_{1} d s+F_{2}\left(\mu d s+\sigma d W_{s}\right)+\frac{1}{2} \sigma^{2} F_{22} d s=\left(F_{1}+\mu F_{2}+\frac{1}{2} \sigma^{2} F_{22}\right) d s+\sigma F_{2} d W_{s}$.
Now suppose that F satisfies the PDE, with boundary condition (BC),

$$
\begin{gather*}
F_{1}(t, x)+\mu(t, x) F_{2}(t, x)+\frac{1}{2} \sigma^{2} F_{22}(t, x)=g(t, x) \tag{PDE}\\
F(T, x)=h(x) . \tag{BC}
\end{gather*}
$$

Then (*) gives

$$
d F=g d s+\sigma F_{2} d W_{s},
$$

which can be written in stochastic-integral form as

$$
F\left(T, X_{T}\right)=F\left(t, X_{t}\right)+\int_{t}^{T} g\left(s, X_{s}\right) d s+\int_{t}^{T} \sigma\left(s, X_{s}\right) F_{2}\left(s, X_{s}\right) d W_{s}
$$

The stochastic integral on the right is a martingale, so has constant expectation, which must be 0 as it starts at 0 . Recalling that $X_{t}=x$, writing $E_{t, x}$ for expectation with value x and starting-time t, and the price at expiry T as $h\left(X_{T}\right)$ as before, taking $E_{t, x}$ gives

$$
E_{t, x} h\left(X_{T}\right)=F(t, x)+E_{t, x} \int_{t}^{T} g\left(s, X_{s}\right) d s
$$

This gives:
Theorem (Feynman-Kac Formula). The solution $F=F(t, x)$ to the PDE

$$
\begin{equation*}
F_{1}(t, x)+\mu(t, x) F_{2}(t, x)+\frac{1}{2} \sigma^{2}(t, x) F_{22}(t, x)=g(t, x) \tag{PDE}
\end{equation*}
$$

with final condition $F(T, x)=h(x)$ has the stochastic representation

$$
\begin{equation*}
F(t, x)=E_{t, x} h\left(X_{T}\right)-E_{t, x} \int_{t}^{T} g\left(s, X_{s}\right) d s \tag{FK}
\end{equation*}
$$

where X satisfies the SDE

$$
\begin{equation*}
d X_{s}=\mu\left(s, X_{s}\right) d s+\sigma\left(s, X_{s}\right) d W_{s} \quad(t \leq s \leq T) \tag{SDE}
\end{equation*}
$$

with initial condition $X_{t}=x$.
Now replace $\mu(t, x)$ by $r x, \sigma(t, x)$ by $\sigma x, g$ by $r F$ in the Feynman-Kac formula above. The SDE becomes

$$
\begin{equation*}
d X_{s}=r X_{s} d s+\sigma X_{s} d W_{s} \tag{**}
\end{equation*}
$$

- the same as for a risky asset with mean return-rate r (the short interestrate for a riskless asset) in place of μ (which disappeared in the Black-Scholes result). The PDE becomes

$$
\begin{equation*}
F_{1}+r x F_{2}+\frac{1}{2} \sigma^{2} x^{2} F_{22}=r F, \tag{BS}
\end{equation*}
$$

the Black-Scholes PDE. So by the Feynman-Kac formula,

$$
d F=r F d s+\sigma F_{2} d W_{s}, \quad F(T, s)=h(s) .
$$

We can eliminate the first term on the right by discounting at rate r : write $G\left(s, X_{s}\right):=e^{-r s} F\left(s, X_{s}\right)$ for the discounted price process. Then as before,

$$
d G=-r e^{-r s} F d s+e^{-r s} d F=e^{-r s}(d F-r F d s)=e^{-r s} . \sigma F_{2} d W
$$

Then integrating, G is a stochastic integral, so a martingale: the discounted price process $G\left(s, X_{s}\right)=e^{-r s} F\left(s, X_{s}\right)$ is a martingale, under the measure P^{*} giving the dynamics in $(* *)$. This is the measure P we started with, except that μ has been changed to r. Thus, G has constant P^{*}-expectation:
$E_{t, x}^{*} G\left(t, X_{t}\right)=E_{t, x}^{*} e^{-r t} F\left(t, X_{t}\right)=e^{-r t} F(t, x)=E_{T, x}^{*} e^{-r T} F\left(T, X_{T}\right)=e^{-r T} h\left(X_{T}\right)$.
This gives the following result:

Theorem (Risk-Neutral Valuation Formula). The no-arbitrage price of the claim $h\left(S_{T}\right)$ with payoff function h is given by

$$
F(t, x)=e^{-r(T-t)} E_{t, x}^{*} h\left(S_{T}\right),
$$

where $S_{t}=x$ is the asset price at time t and P^{*} is the measure under which the asset price dynamics are given by

$$
d S_{t}=r S_{t} d t+\sigma\left(t, S_{t}\right) S_{t} d W_{t}
$$

Corollary. In the Black-Scholes model above, the arbitrage-free price does not depend on the mean return rate μ of the underlying asset.

Comments.

1. Risk-neutral measure.

We call P^{*} the risk-neutral probability measure. It is equivalent to P (by Girsanov's Theorem - the change-of-measure result, which deals with change of drift in SDEs - see VI.4, L29 below), and is a martingale measure (as the discounted asset prices are P^{*}-martingales, by above), i.e. $P^{*}($ or $Q)$ is the equivalent martingale measure (EMM).
2. Fundamental Theorem of Asset Pricing (FTAP); Risk-Neutral Valuation Formula (RNVF).

The above continuous-time result may be summarised just as the FTAP/RNVF in discrete time: to get the no-arbitrage price of a contingent claim, take the discounted expected value under the equivalent mg (risk-neutral) measure.

3. Completeness.

In discrete time, we saw that absence of arbitrage corresponded to existence of risk-neutral measures, completeness to uniqueness. We have obtained existence and uniqueness here (and so completeness), by appealing to existence and uniqueness theorems for PDEs (which we have not proved!). A more probabilistic route is to use Girsanov's Theorem (VI.4) instead. Completeness questions then become questions on representation theorems for Brownian martingales (VI4). As usual, there is a choice of routes to the major results - in this case, a trade-off between analysis (PDEs) and probability (Girsanov's Theorem and the Representation Theorem for Brownian Martingales, VI.4).

Now the process specified under P^{*} by the dynamics $(* *)$ is our old friend geometric Brownian motion, $G B M(r, \sigma)$. Thus if S_{t} has P^{*}-dynamics

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}, \quad S_{t}=s
$$

with W a P^{*}-Brownian motion, then we can write S_{T} explicitly as

$$
S_{T}=s \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(W_{T}-W_{t}\right)\right\} .
$$

Now $W_{T}-W_{t}$ is normal $N(0, T-t)$, so $\left(W_{T}-W_{t}\right) / \sqrt{T-t}=: Z \sim N(0,1)$:

$$
S_{T}=s \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma Z \sqrt{T-t}\right\}, \quad Z \sim N(0,1)
$$

So by the Risk-Neutral Valuation Formula, the pricing formula is

$$
F(t, x)=e^{-r(T-t)} \int_{-\infty}^{\infty} h\left(s \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma(T-t)^{\frac{1}{2}} x\right\}\right) \cdot \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} d x
$$

For a general payoff function h, there is no explicit formula for the integral, which has to be evaluated numerically. But we can evaluate the integral for the basic case of a European call option with strike-price K:

$$
h(s)=(s-K)^{+} .
$$

Then
$F(t, x)=e^{-r(T-t)} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}}\left[s \exp \left\{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma(T-t)^{\frac{1}{2}} x\right\}-K\right]_{+} d x$.
We have already evaluated integrals of this type in Chapter IV, where we obtained the Black-Scholes formula from the binomial model by a passage to the limit. Completing the square in the exponential as before gives the

Continuous Black-Scholes Formula.

$$
F(t, s)=s \Phi\left(d_{+}\right)-e^{-r(T-t)} K \Phi\left(d_{-}\right),
$$

where

$$
d_{ \pm}:=\left[\log (s / K)+\left(r \pm \frac{1}{2} \sigma^{2}\right)(T-t)\right] / \sigma \sqrt{T-t}
$$

