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Taking existence of a unique solution for granted for the moment, consider
a smooth function F (s,Xs) of it. By Itô’s Lemma,

dF = F1ds+ F2dX +
1

2
F22(dX)2,

and as (dX)2 = (µds+ σdWs)
2 = σ2(dWs)

2 = σ2ds, this is

dF = F1ds+F2(µds+σdWs)+
1

2
σ2F22ds = (F1+µF2+

1

2
σ2F22)ds+σF2dWs.

(∗)
Now suppose that F satisfies the PDE, with boundary condition (BC),

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2F22(t, x) = g(t, x) (PDE)

F (T, x) = h(x). (BC)

Then (∗) gives
dF = gds+ σF2dWs,

which can be written in stochastic-integral form as

F (T,XT ) = F (t,Xt) +

∫ T

t

g(s,Xs)ds+

∫ T

t

σ(s,Xs)F2(s,Xs)dWs.

The stochastic integral on the right is a martingale, so has constant expec-
tation, which must be 0 as it starts at 0. Recalling that Xt = x, writing Et,x

for expectation with value x and starting-time t, and the price at expiry T
as h(XT ) as before, taking Et,x gives

Et,xh(XT ) = F (t, x) + Et,x

∫ T

t

g(s,Xs)ds.

This gives:

Theorem (Feynman-Kac Formula). The solution F = F (t, x) to the
PDE

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2(t, x)F22(t, x) = g(t, x) (PDE)
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with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = Et,xh(XT )− Et,x

∫ T

t

g(s,Xs)ds, (FK)

where X satisfies the SDE

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ) (SDE)

with initial condition Xt = x.

Now replace µ(t, x) by rx, σ(t, x) by σx, g by rF in the Feynman-Kac
formula above. The SDE becomes

dXs = rXsds+ σXsdWs (∗∗)

– the same as for a risky asset with mean return-rate r (the short interest-
rate for a riskless asset) in place of µ (which disappeared in the Black-Scholes
result). The PDE becomes

F1 + rxF2 +
1

2
σ2x2F22 = rF, (BS)

the Black-Scholes PDE. So by the Feynman-Kac formula,

dF = rFds+ σF2dWs, F (T, s) = h(s).

We can eliminate the first term on the right by discounting at rate r: write
G(s,Xs) := e−rsF (s,Xs) for the discounted price process. Then as before,

dG = −re−rsFds+ e−rsdF = e−rs(dF − rFds) = e−rs.σF2dW.

Then integrating, G is a stochastic integral, so a martingale: the discounted
price process G(s,Xs) = e−rsF (s,Xs) is a martingale, under the measure P ∗

giving the dynamics in (∗∗). This is the measure P we started with, except
that µ has been changed to r. Thus, G has constant P ∗-expectation:

E∗
t,xG(t,Xt) = E∗

t,xe
−rtF (t,Xt) = e−rtF (t, x) = E∗

T,xe
−rTF (T,XT ) = e−rTh(XT ).

This gives the following result:
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Theorem (Risk-Neutral Valuation Formula). The no-arbitrage price
of the claim h(ST ) with payoff function h is given by

F (t, x) = e−r(T−t)E∗
t,xh(ST ),

where St = x is the asset price at time t and P ∗ is the measure under which
the asset price dynamics are given by

dSt = rStdt+ σ(t, St)StdWt.

Corollary. In the Black-Scholes model above, the arbitrage-free price does
not depend on the mean return rate µ of the underlying asset.

Comments.
1. Risk-neutral measure.

We call P ∗ the risk-neutral probability measure. It is equivalent to P (by
Girsanov’s Theorem – the change-of-measure result, which deals with change
of drift in SDEs – see VI.4, L29 below), and is a martingale measure (as the
discounted asset prices are P ∗-martingales, by above), i.e. P ∗ (or Q) is the
equivalent martingale measure (EMM).
2. Fundamental Theorem of Asset Pricing (FTAP); Risk-Neutral Valuation
Formula (RNVF).

The above continuous-time result may be summarised just as the FTAP/RNVF
in discrete time: to get the no-arbitrage price of a contingent claim, take the
discounted expected value under the equivalent mg (risk-neutral) measure.
3. Completeness.

In discrete time, we saw that absence of arbitrage corresponded to ex-
istence of risk-neutral measures, completeness to uniqueness. We have ob-
tained existence and uniqueness here (and so completeness), by appealing to
existence and uniqueness theorems for PDEs (which we have not proved!). A
more probabilistic route is to use Girsanov’s Theorem (VI.4) instead. Com-
pleteness questions then become questions on representation theorems for
Brownian martingales (VI4). As usual, there is a choice of routes to the
major results – in this case, a trade-off between analysis (PDEs) and prob-
ability (Girsanov’s Theorem and the Representation Theorem for Brownian
Martingales, VI.4).

Now the process specified under P ∗ by the dynamics (∗∗) is our old friend
geometric Brownian motion, GBM(r, σ). Thus if St has P

∗-dynamics

dSt = rStdt+ σStdWt, St = s,
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with W a P ∗-Brownian motion, then we can write ST explicitly as

ST = s exp{(r − 1

2
σ2)(T − t) + σ(WT −Wt)}.

Now WT −Wt is normal N(0, T − t), so (WT −Wt)/
√
T − t =: Z ∼ N(0, 1):

ST = s exp{(r − 1

2
σ2)(T − t) + σZ

√
T − t}, Z ∼ N(0, 1).

So by the Risk-Neutral Valuation Formula, the pricing formula is

F (t, x) = e−r(T−t)

∫ ∞

−∞
h(s exp{(r − 1

2
σ2)(T − t) + σ(T − t)

1
2x}).e

− 1
2
x2

√
2π

dx.

For a general payoff function h, there is no explicit formula for the integral,
which has to be evaluated numerically. But we can evaluate the integral for
the basic case of a European call option with strike-price K:

h(s) = (s−K)+.

Then

F (t, x) = e−r(T−t)

∫ ∞

−∞

e−
1
2
x2

√
2π

[s exp{(r− 1

2
σ2)(T − t)+σ(T − t)

1
2x}−K]+dx.

We have already evaluated integrals of this type in Chapter IV, where we
obtained the Black-Scholes formula from the binomial model by a passage to
the limit. Completing the square in the exponential as before gives the

Continuous Black-Scholes Formula.

F (t, s) = sΦ(d+)− e−r(T−t)KΦ(d−),

where

d± := [log(s/K) + (r ± 1

2
σ2)(T − t)]/σ

√
T − t.
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