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Taking existence of a unique solution for granted for the moment, consider
a smooth function F'(s, X) of it. By Itd’s Lemma,

1
dF = Fyds + FodX + §F22(dX)2,

and as (dX)? = (uds + cdWy)? = 0?(dW,)* = o?ds, this is
1 1
dF = F1d3+F2(uds+adWs)+502F22ds = (F +,UF2+§O'2F22)CZS+O'FQCZWS.

()

Now suppose that F' satisfies the PDE, with boundary condition (BC),
1
Fi(t,z) + p(t,z) Byt x) + 5<721?22(t, r) = g(t, ) (PDE)

F(T,z) = h(x). (BC)

Then (x) gives
dF = gds + o FodW,

which can be written in stochastic-integral form as
T T
F(T, Xr)=F(t, X;) + / g(s, Xs)ds + / o(s, Xs)Fa(s, Xs)dWs.
t t

The stochastic integral on the right is a martingale, so has constant expec-
tation, which must be 0 as it starts at 0. Recalling that X; = , writing E; ,
for expectation with value x and starting-time ¢, and the price at expiry T’
as h(Xr) as before, taking F; , gives

T
Eyh(Xr) = F(t,) + Ev / o(s, X.)ds.
t
This gives:

Theorem (Feynman-Kac Formula). The solution F' = F(t,x) to the
PDE

Fi(t,z) + p(t, z)Fy(t, x) + %O'Q(t, x)Foo(t, ) = g(t, x) (PDE)



with final condition F(7,z) = h(x) has the stochastic representation

T
F(t,z) = By h(Xr) — Et,:r/ g(s, Xs)ds, (FK)
¢

where X satisfies the SDE
dXs = (s, Xs)ds + o(s, Xs)dWs (t<s<T) (SDE)
with initial condition X; = x.

Now replace u(t,z) by rz, o(t,z) by ox, g by rF in the Feynman-Kac
formula above. The SDE becomes

dX, =rX.ds+ o X ,dW, ()

— the same as for a risky asset with mean return-rate r (the short interest-
rate for a riskless asset) in place of pu (which disappeared in the Black-Scholes
result). The PDE becomes

1
Py +raFy + 502x2F22 =rk, (BS)
the Black-Scholes PDE. So by the Feynman-Kac formula,
dF = rFds + o FodWy, F(T,s) = h(s).

We can eliminate the first term on the right by discounting at rate r: write
G(s, Xs) == e " F(s, X;) for the discounted price process. Then as before,

dG = —re " Fds + e "dF = e "*(dF — rFds) = e .o FodW.

Then integrating, GG is a stochastic integral, so a martingale: the discounted
price process G(s, X,) = e " F(s, Xs) is a martingale, under the measure P*
giving the dynamics in (x*). This is the measure P we started with, except
that p has been changed to r. Thus, G' has constant P*-expectation:

Ef,G(t, X)) = E e "F(t,X,) = e "F(t,x) = By e " F(T, X7) = ¢ ""h(Xr).

This gives the following result:



Theorem (Risk-Neutral Valuation Formula). The no-arbitrage price
of the claim h(S7) with payoff function A is given by

F(t,z) = e " TV E; h(Sy),

where S; = x is the asset price at time ¢ and P* is the measure under which
the asset price dynamics are given by

dSt = TStdt + U(t, St)Stth.

Corollary. In the Black-Scholes model above, the arbitrage-free price does
not depend on the mean return rate p of the underlying asset.

Comments.
1. Risk-neutral measure.

We call P* the risk-neutral probability measure. It is equivalent to P (by
Girsanov’s Theorem — the change-of-measure result, which deals with change
of drift in SDEs — see V1.4, L29 below), and is a martingale measure (as the
discounted asset prices are P*-martingales, by above), i.e. P* (or Q) is the
equivalent martingale measure (EMM).

2. Fundamental Theorem of Asset Pricing (FTAP); Risk-Neutral Valuation
Formula (RNVF).

The above continuous-time result may be summarised just as the FTAP/RNVF
in discrete time: to get the no-arbitrage price of a contingent claim, take the
discounted expected value under the equivalent mg (risk-neutral) measure.

3. Completeness.

In discrete time, we saw that absence of arbitrage corresponded to ez-
istence of risk-neutral measures, completeness to uniqueness. We have ob-
tained existence and uniqueness here (and so completeness), by appealing to
existence and uniqueness theorems for PDEs (which we have not proved!). A
more probabilistic route is to use Girsanov’s Theorem (VI.4) instead. Com-
pleteness questions then become questions on representation theorems for
Brownian martingales (VI4). As usual, there is a choice of routes to the
major results — in this case, a trade-off between analysis (PDEs) and prob-
ability (Girsanov’s Theorem and the Representation Theorem for Brownian
Martingales, VI1.4).

Now the process specified under P* by the dynamics (*x) is our old friend
geometric Brownian motion, GBM (r,c). Thus if S; has P*-dynamics

dSt = TStdt + UStth, St =S,



with W a P*-Brownian motion, then we can write St explicitly as
1
St = sexp{(r — 502)(T —t)+o(Wp — W)}
Now Wp — W is normal N (0,7 —t), so (Wp — W) /T —t =:Z ~ N(0,1):

STzsexp{(r—%02)(T—t)+aZx/T—t}, Z ~ N(0,1).

So by the Risk-Neutral Valuation Formula, the pricing formula is

F(t,z) = e 7T /OO h(sexp{(r — %#)(T ) +o(T - t);x}).e\/;

For a general payoff function h, there is no explicit formula for the integral,
which has to be evaluated numerically. But we can evaluate the integral for
the basic case of a European call option with strike-price K:

dz.

h(s) = (s — K)*.

Then

0o ,—ig2
e 2
F(t,z) =e T /

(t, z) -
We have already evaluated integrals of this type in Chapter IV, where we
obtained the Black-Scholes formula from the binomial model by a passage to
the limit. Completing the square in the exponential as before gives the

(s exp{(r — %&)(T D)+ o(T — )i} - K], dr.

Continuous Black-Scholes Formula.
F(t,s) = s®(d.) — e " THDKD(d),

where

ds = [log(s/K) + (r + %&)(T _4)]/ovT =1



