m3a22l26tex
Lecture 26 8.12.2015

§2. The Black-Scholes Model; the Black-Scholes PDE

For the purposes of this section only, it is convenient to be able to use the 'W for Wiener' notation for Brownian motion/Wiener process, thus liberating B for the alternative use 'B for bank [account]'. Thus our driving noise terms will now involve $d W_{t}$, our deterministic [bank-account] terms $d B_{t}$.

We now consider an investor constructing a trading strategy in continuous time, with the choice of two types of investment:
(i) riskless investment in a bank account paying interest at rate $r>0$ (the short rate of interest): $B_{t}=B_{0} e^{r t} \quad(t \geq 0)$ [we neglect the complications involved in possible failure of the bank - though banks do fail-witness Barings 1995, or AIB 2002!];
(ii) risky investment in stock, one unit of which has price modelled as above by $G M B(\mu, \sigma)$. Here the volatility $\sigma>0$; the restriction $0<r<\mu$ on the short rate r for the bank and underlying rate μ for the stock are economically natural (but not mathematically necessary); the stock dynamics are thus given by

$$
d S_{t}=S_{t}\left(\mu d t+\sigma d W_{t}\right)
$$

Notation. Later, we shall need to consider several types of risky stock - d stocks, say. It is convenient, and customary, to use a superscript i to label stock type, $i=1, \cdots, d$; thus S^{1}, \cdots, S^{d} are the risky stock prices. We can then use a superscript 0 to label the bank account, S^{0}. So with one risky asset as above (Week 9), the dynamics are

$$
\begin{aligned}
d S_{t}^{0} & =r S_{t}^{0} d t \\
d S_{t}^{1} & =\mu S_{t}^{1} d t+\sigma S_{t}^{1} d W_{t}
\end{aligned}
$$

We shall focus on pricing at time 0 of options with expiry time T; thus the index-set for time t throughout may be taken as $[0, T]$ rather than $[0, \infty)$.

We proceed as in the discrete-time model of IV.1. A trading strategy H is a vector stochastic process

$$
\left.H=\left(H_{t}: 0 \leq t \leq T\right)=\left(\left(H_{t}^{0}, H_{t}^{1}, \cdots, H_{t}^{d}\right)\right): 0 \leq t \leq T\right)
$$

which is previsible: each H_{t}^{i} is a previsible process (so, in particular, $\left(\mathcal{F}_{t-}\right)$ adapted) [we may simplify with little loss of generality by replacing previsibility here by left-continuity of H_{t} in $\left.t\right]$. The vector $H_{t}=\left(H_{t}^{0}, H_{t}^{1}, \cdots, H_{t}^{d}\right)$
is the portfolio at time t. If $S_{t}=\left(S_{t}^{0}, S_{t}^{1}, \cdots, S_{t}^{d}\right)$ is the vector of prices at time t, the value of the portfolio at t is the scalar product

$$
V_{t}(H):=H_{t} \cdot S_{t}=\Sigma_{i=0}^{d} H_{t}^{i} S_{t}^{i} .
$$

The discounted value is

$$
\tilde{V}_{t}(H)=\beta_{t}\left(H_{t} \cdot S_{t}\right)=H_{t} \cdot \tilde{S}_{t},
$$

where $\beta_{t}:=1 / S_{t}^{0}=e^{-r t}$ (fixing the scale by taking the initial bank account as $1, S_{0}^{0}=1$), so

$$
\tilde{S}_{t}=\left(1, \beta_{t} S_{t}^{1}, \cdots, \beta_{t} S_{t}^{d}\right)
$$

is the vector of discounted prices.
Recall that
(i) in IV. $1 H$ is a self-financing strategy if $\Delta V_{n}(H)=H_{n} \cdot \Delta S_{n}$, i.e. $V_{n}(H)$ is the martingale transform of S by H,
(ii) stochastic integrals are the continuous analogues of martingale transforms.
We thus define the strategy H to be self-financing, $H \in S F$, if

$$
d V_{t}=H_{t} \cdot d S_{t}=\Sigma_{0}^{d} H_{t}^{i} d S_{t}^{i}
$$

The discounted value process is

$$
\tilde{V}_{t}(H)=e^{-r t} V_{t}(H)
$$

and the interest rate is r. So

$$
d \tilde{V}_{t}(H)=-r e^{-r t} d t . V_{t}(H)+e^{-r t} d V_{t}(H)
$$

(since $e^{-r t}$ has finite variation, this follows from integration by parts,

$$
d(X Y)_{t}=X_{t} d Y_{t}+Y_{t} d X_{t}+\frac{1}{2} d\langle X, Y\rangle_{t}
$$

- the quadratic covariation of a finite-variation term with any term is zero)

$$
\begin{aligned}
& =-r e^{-r t} H_{t} \cdot S_{t} d t+e^{-r t} H_{t} \cdot d S_{t} \\
& =H_{t} \cdot\left(-r e^{-r t} S_{t} d t+e^{-r t} d S_{t}\right) \\
& =H_{t} \cdot d \tilde{S}_{t}
\end{aligned}
$$

($\tilde{S}_{t}=e^{-r t} S_{t}$, so $d \tilde{S}_{t}=-r e^{-r t} S_{t} d t+e^{-r t} d S_{t}$ as above).
Summarising: for H self-financing,

$$
\begin{aligned}
d V_{t}(H)=H_{t} \cdot d S_{t}, & d \tilde{V}_{t}(H)=H_{t} \cdot d \tilde{S}_{t} \\
V_{t}(H)=V_{0}(H)+\int_{0}^{t} H_{s} d S_{s}, & \tilde{V}_{t}(H)=\tilde{V}_{0}(H)+\int_{0}^{t} H_{s} d \tilde{S}_{s}
\end{aligned}
$$

Now write $U_{t}^{i}:=H_{t}^{i} S_{t}^{i} / V_{t}(H)=H_{t}^{i} S_{t}^{i} / \Sigma_{j} H_{t}^{j} S_{t}^{j}$ for the proportion of the value of the portfolio held in asset $i=0,1, \cdots, d$. Then $\Sigma U_{t}^{i}=1$, and $U_{t}=\left(U_{t}^{0}, \cdots, U_{t}^{d}\right)$ is called the relative portfolio. For H self-financing,

$$
\begin{gathered}
d V_{t}=H_{t} \cdot d S_{t}=\Sigma H_{t}^{i} d S_{t}^{i}=V_{t} \Sigma \frac{H_{t}^{i} S_{t}^{i}}{V_{t}} \cdot \frac{d S_{t}^{i}}{S_{t}^{i}}: \\
d V_{t}=V_{t} \Sigma U_{t}^{i} d S_{t}^{i} / S_{t}^{i}
\end{gathered}
$$

Dividing through by V_{t}, this says that the return $d V_{t} / V_{t}$ is the weighted average of the returns $d S_{t}^{i} / S_{t}^{i}$ on the assets, weighted according to their proportions U_{t}^{i} in the portfolio.
Note. Having set up this notation (that of [HP]) - in order to be able if we wish to have a basket of assets in our portfolio - we now prefer - for simplicity - to specialise back to the simplest case, that of one risky asset. Thus we will now take $d=1$ until further notice.

Arbitrage. This is as in discrete time: an admissible $\left(V_{t}(H) \geq 0\right.$ for all $\left.t\right)$ self-financing strategy H is an arbitrage (strategy, or opportunity) if

$$
V_{0}(H)=0, \quad V_{T}(H)>0 \quad \text { with positive } P \text {-probability. }
$$

The market is viable, or arbitrage-free, or NA, if there are no arbitrage opportunities.

We see first that if the value-process V satisfies the SDE

$$
d V_{t}(H)=K(t) V_{t}(H) d t
$$

- that is, if there is no driving Wiener (or noise) term - then $K(t)=r$, the short rate of interest. For, if $K(t)>r$, we can borrow money from the bank at rate r and buy the portfolio. The value grows at rate $K(t)$, our debt grows at rate r, so our net profit grows at rate $K(t)-r>0-$ an arbitrage. Similarly, if $K(t)<r$, we can invest money in the bank and sell the portfolio
short. Our net profit grows at rate $r-K(t)>0$, risklessly - again an arbitrage. We have proved the

Proposition. In an arbitrage-free (NA) market, a portfolio whose value process has no driving Wiener term in its dynamics must have return rate r, the short rate of interest.

We restrict attention to arbitrage-free (viable) markets from now on.
We now consider tradeable derivatives, whose price at expiry depends only on $S(T)$ (the final value of the stock) - $h(S(T)$), say, and whose price Π_{t} depends smoothly on the asset price S_{t} : for some smooth function F,

$$
\Pi_{t}:=F\left(t, S_{t}\right) .
$$

The dynamics of the riskless and risky assets are

$$
d B_{t}=r B_{t} d t, \quad d S_{t}=\mu S_{t} d t+\sigma S_{t} d W_{t}
$$

where μ, σ may depend on both t and S_{t} :

$$
\mu=\mu\left(t, S_{t}\right), \quad \sigma=\sigma\left(t, S_{t}\right)
$$

The next result is the celebrated Black-Scholes partial differential equation (PDE) of 1973, one of the central results of the subject:

Theorem (Black-Scholes PDE). In a market with one riskless asset B_{t} and one risky asset S_{t}, with short interest-rate r and dynamics

$$
\begin{aligned}
d B_{t} & =r B_{t} d t, \\
d S_{t} & =\mu\left(t, S_{t}\right) S_{t} d t+\sigma\left(t, S_{t}\right) S_{t} d W_{t},
\end{aligned}
$$

let a contingent claim be tradeable, with price $h\left(S_{T}\right)$ at expiry T and price process $\Pi_{t}:=F\left(t, S_{t}\right)$ for some smooth function F. Then the only pricing function F which does not admit arbitrage is the solution to the Black-Scholes PDE with boundary condition:

$$
\begin{gather*}
F_{1}(t, x)+r x F_{2}(t, x)+\frac{1}{2} x^{2} \sigma^{2}(t, x) F_{22}(t, x)-r F(t, x)=0, \tag{BS}\\
F(T, x)=h(x) . \tag{BC}
\end{gather*}
$$

