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Note. The stochastic integral for simple integrands is essentially a martingale
transform, and the above is essentially the proof of Ch. III that martingale
transforms are martingales.

We pause to note a property of martingales which we shall need below.
Call Xt − Xs the increment of X over (s, t]. Then for a martingale X,
the product of the increments over disjoint intervals has zero mean. For, if
s < t ≤ u < v,

E[(Xv −Xu)(Xt −Xs)] = E[E[(Xv −Xu)(Xt −Xs)|Fu]]

= E[(Xt −Xs)E[(Xv −Xu)|Fu]],

taking out what is known (as s, t ≤ u). The inner expectation is zero by the
martingale property, so the LHS is zero, as required.

D (Itô isometry). E[(It(X))2], or E[(
∫ t

0
XsdBs)

2], = E[
∫ t

0
X2

sds].
Proof. The LHS above is E[It(X).It(X)], i.e.

E[(Σn−1
i=0 ξi(B(ti+1)−B(ti)) + ξn(B(t)−B(tn)))

2].

Expanding the square, the cross-terms have expectation zero by above, so

E[Σn−1
i=0 ξ

2
i (B(ti+i −B(ti))

2 + ξ2n(B(t)−B(tn))
2].

Since ξi is Fti-measurable, each ξ2i -term is independent of the squared Brown-
ian increment term following it, which has expectation var(B(ti+1)−B(ti)) =
ti+1 − ti. So we obtain

Σn−1
i=0 E[ξ2i ](ti+1 − ti) + E[ξ2n](t− tn).

This is
∫ t

0
E[X2

u]du = E[
∫ t

0
X2

udu], as required.

E. Itô isometry (continued). It(X)− Is(X) =
∫ t

s
XudBu satisfies

E[(

∫ t

s

XudBu)
2] = E[

∫ t

s

X2
udu] P − a.s.

Proof: as above.
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F. Quadratic variation. The QV of It(X) =
∫ t

0
XudBu is

∫ t

0
X2

udu.
This is proved in the same way as the case X ≡ 1, that B has quadratic

variation process t.

Integrands.
The properties above suggest that

∫ t

0
XdB should be defined only for

processes with ∫ t

0

E[X2
u]du < ∞ for all t.

We shall restrict attention to such X in what follows. This gives us an L2-
theory of stochastic integration (compare the L2-spaces introduced in Ch.
II), for which Hilbert-space methods are available.

3. Approximation.
Recall steps 1 (indicators) and 2 (simple integrands). By analogy with the

integral of Ch. II, we seek a suitable class of integrands suitably approximable
by simple integrands. It turns out that:
(i) The suitable class of integrands is the class of left-continuous adapted
processes X with

∫ t

0
E[X2

u]du < ∞ for all t > 0 (or all t ∈ [0, T ] with finite
time-horizon T , as here),
(ii) Each such X may be approximated by a sequence of simple integrands
Xn so that the stochastic integral It(X) =

∫ t

0
XdB may be defined as the

limit of It(Xn) =
∫ t

0
XndB,

(iii) The stochastic integral
∫ t

0
XdB so defined still has properties A-F above.

It is not possible to include detailed proofs of these assertions in a course
of this type [recall that we did not construct the measure-theoretic integral
of Ch. II in detail either - and this is harder!]. The key technical ingredient
needed is the Kunita-Watanabe inequalities. See e.g. [KS], §§3.1-2.

One can define stochastic integration in much greater generality.
1. Integrands. The natural class of integrands X to use here is the class of
predictable processes. These include the left-continuous processes to which
we confine ourselves above.
2. Integrators. One can construct a closely analogous theory for stochastic
integrals with the Brownian integrator B above replaced by a continuous
local martingale integrator M (or more generally by a local martingale: see
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below). The properties above hold, with D replaced by

E[(

∫ t

0

XudMu)
2] = E[

∫ t

0

X2
ud⟨M⟩u].

See e.g. [KS], [RY] for details.
One can generalise further to semimartingale integrators: these are pro-

cesses expressible as the sum of a local martingale and a process of (locally)
finite variation. Now C is replaced by: stochastic integrals of local martin-
gales are local martingales. See e.g. [RW1] or Meyer (1976) for details.

§6. Stochastic Differential Equations (SDEs) and Itô’s Lemma

Suppose that U, V are adapted processes,with U locally integrable (so∫ t

0
Usds is defined as an ordinary integral, as in Ch. II), and V is left-

continuous with
∫ t

0
E[V 2

u ]du < ∞ for all t (so
∫ t

0
VsdBs is defined as a stochas-

tic integral, as in §5). Then

Xt := x0 +

∫ t

0

Usds+

∫ t

0

VsdBs

defines a stochastic process X with X0 = x0. It is customary, and convenient,
to express such an equation symbolically in differential form, in terms of the
stochastic differential equation

dXt = Utdt+ VtdBt, X0 = x0. (SDE)

Now suppose that f : R2 → R is a function, continuously differentiable
once in its first argument (which will denote time), and twice in its second
argument (space): f ∈ C1,2. The question arises of giving a meaning to the
stochastic differential df(t,Xt) of the process f(t,Xt), and finding it.

Recall the Taylor expansion of a smooth function of several variables,
f(x0, x1, · · · , xd) say. We use suffices to denote partial derivatives: fi :=
∂f/∂xi, fi,j := ∂2f/∂xi∂xj (recall that if partials not only exist but are
continuous, then the order of partial differentiation can be changed: fi,j =
fj,i, etc.). Then for x = (x0, x1, · · · , xd) near u,

f(x) = f(u) + Σd
i=0(xi − ui)fi(u) +

1

2
Σd

i,j=0(xi − ui)(xj − uj)fi,j(u) + · · ·
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In our case (writing t0 in place of 0 for the starting time):

f(t,Xt) = f(t0, X(t0))+(t−t0)f1(t0, X(t0))+(X(t)−X(t0))f2+
1

2
(t−t0)

2f11+

(t− t0)(X(t)−X(t0))f12 +
1

2
(X(t)−X(t0))

2f22 + · · · ,

which may be written symbolically as

df(t,X(t)) = f1dt+ f2dX +
1

2
f11(dt)

2 + f12dtdX +
1

2
f22(dX)2 + · · · .

In this, we
(i) substitute dXt = Utdt+ VtdBt from above,
(ii) substitute (dBt)

2 = dt, i.e. |dBt| =
√
dt, from §4:

df = f1dt+f2(Udt+V dB)+
1

2
f11(dt)

2+f12dt(Udt+V dB)+
1

2
f22(Udt+V dB)2+· · ·

Now using (dB)2 = dt,

(Udt+ V dB)2 = V 2dt+ 2UV dtdB + U2(dt)2

= V 2dt+ higher-order terms :

df = (f1 + Uf2 +
1

2
V 2f22)dt+ V f2dB + higher-order terms.

Summarising, we obtain Itô’s Lemma, the analogue for the Itô or stochastic
calculus of the chain rule for ordinary (Newton-Leibniz) calculus:

Theorem (Itô’s Lemma). If Xt has stochastic differential

dXt = Utdt+ VtdBt, X0 = x0,

and f ∈ C1,2, then f = f(t,Xt) has stochastic differential

df = (f1 + Uf2 +
1

2
V 2f22)dt+ V f2dBt.

That is, writing f0 for f(0, x0), the initial value of f ,

f(t,Xt)) = f0 +

∫ t

0

(f1 + Uf2 +
1

2
V 2f22)dt+

∫ t

0

V f2dB.
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