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Note. The stochastic integral for simple integrands is essentially a martingale
transform, and the above is essentially the proof of Ch. III that martingale
transforms are martingales.

We pause to note a property of martingales which we shall need below.
Call X; — X, the increment of X over (s,t]. Then for a martingale X,
the product of the increments over disjoint intervals has zero mean. For, if
s<t<u<w,

E[(Xv - Xu)(Xt - Xs)] = E[E[(XU - XU>(Xt - Xs>|-’TUH
= E[(X; — X)) E[(Xy — Xu)|Fu]],

taking out what is known (as s,¢ < u). The inner expectation is zero by the
martingale property, so the LHS is zero, as required.

D (Ité isometry). E[(I,(X))?], or E[([, X,dB,)?, = E[f, X2ds).
Proof. The LHS above is E[I;(X).I;:(X)], i.e.

E((ZZ&(B(tivr) — B(ti) + &(B(t) — B(ta)))?].
Expanding the square, the cross-terms have expectation zero by above, so
B[S & (B(tivi — B(t:))* + &(B(t) — B(ta))?).

Since ¢; is F;,-measurable, each £2-term is independent of the squared Brown-
ian increment term following it, which has expectation var(B(t;+1)—B(t;)) =
tir1 — t;. So we obtain

SO EE (tigr — t) + E[E)(E — tn).
This is [, E[X2|du = E[f, X2du], as required.

E. 1té isometry (continued). I;(X) — I4(X) = f; X.dB, satisfies

E[(/: X, dB,)% = E[/: X2du] P —a.s.

Proof. as above.



F. Quadratic variation. The QV of [,(X) = fot X, dB, is fot X2du.
This is proved in the same way as the case X = 1, that B has quadratic
variation process t.

Integrands.
The properties above suggest that fot XdB should be defined only for
processes with

t
/ E[X2)du < oo forall ¢t
0

We shall restrict attention to such X in what follows. This gives us an Lo-
theory of stochastic integration (compare the Lo-spaces introduced in Ch.
IT), for which Hilbert-space methods are available.

3. Approximation.

Recall steps 1 (indicators) and 2 (simple integrands). By analogy with the
integral of Ch. II, we seek a suitable class of integrands suitably approximable
by simple integrands. It turns out that:

(i) The suitable class of integrands is the class of left-continuous adapted
processes X with [} E[X2]du < oo for all ¢ > 0 (or all t € [0,7] with finite
time-horizon T', as here),

(ii) Each such X may be approximated by a sequence of simple integrands
X, so that the stochastic integral I;(X) = fot XdB may be defined as the
limit of [,(X,,) = [, X,dB,

(iii) The stochastic integral fot XdB so defined still has properties A-F above.

It is not possible to include detailed proofs of these assertions in a course
of this type [recall that we did not construct the measure-theoretic integral
of Ch. II in detail either - and this is harder!]. The key technical ingredient
needed is the Kunita-Watanabe inequalities. See e.g. [KS], §§3.1-2.

One can define stochastic integration in much greater generality.

1. Integrands. The natural class of integrands X to use here is the class of
predictable processes. These include the left-continuous processes to which
we confine ourselves above.

2. Integrators. One can construct a closely analogous theory for stochastic
integrals with the Brownian integrator B above replaced by a continuous
local martingale integrator M (or more generally by a local martingale: see



below). The properties above hold, with D replaced by

Bl [ X = B[ xzaan,)

See e.g. [KS], [RY] for details.

One can generalise further to semimartingale integrators: these are pro-
cesses expressible as the sum of a local martingale and a process of (locally)
finite variation. Now C is replaced by: stochastic integrals of local martin-
gales are local martingales. See e.g. [RW1] or Meyer (1976) for details.

§6. Stochastic Differential Equations (SDEs) and It6’s Lemma

Suppose that U,V are adapted processes,with U locally integrable (so
fot Usds is defined as an ordinary integral, as in Ch. II), and V is left-

continuous with fg E[V2]du < oo for all ¢ (so fg VisdBs is defined as a stochas-
tic integral, as in §5). Then

t t
X = +/ Usds +/ VidB;
0 0

defines a stochastic process X with Xy = z¢. It is customary, and convenient,
to express such an equation symbolically in differential form, in terms of the
stochastic differential equation

dXt = Utdt + ‘/;dBt, XO = X29- (SDE)

Now suppose that f : R? — R is a function, continuously differentiable
once in its first argument (which will denote time), and twice in its second
argument (space): f € CY2 The question arises of giving a meaning to the
stochastic differential df (¢, X;) of the process f(t, X;), and finding it.

Recall the Taylor expansion of a smooth function of several variables,
flxo,z1,- -+, xq) say. We use suffices to denote partial derivatives: f; :=
of |0x;, fij = 0*f/0x;0x; (recall that if partials not only exist but are
continuous, then the order of partial differentiation can be changed: f;; =
fji, etc.). Then for z = (xg, 21, -, x4) near u,

flx) = flu) + S (z — w) fi(u) + %sz:o(xi —ui)(zj — uy) fij(u) + -



In our case (writing ¢y in place of 0 for the starting time):

[t Xe) = f(to, X(to))+(t—10) f1(to, X(to))ﬂL(X(t)—X(to))fﬁ%(t—to)2f11+

(t — t0)(X(6) — X (1)) fis + 5 (X(0) = X (1)) o+ -+,

which may be written symbolically as

df(t, X(t)) = frdt + fodX + %fn(dt)2 + fiedtdX + %fgg(dX)Q + -

In this, we
(1) substitute dX; = U;dt + V,dB, from above,
(i) substitute (dB;)? = dt, i.e. |dB,| = V/dt, from §4:

1 1
df = fldt+f2(Udt+VdB)+§ fi1(dt)*+ flgdt(Udt+VdB)+§ for(Udt+VdB)*+- - -

Now using (dB)? = dt,

(Udt +VdB)* = V2t +2UVdtdB + U?(dt)*
= V?2dt + higher-order terms :

1
df =(fi+Ufy+ §V2f22)dt + V fodB + higher-order terms.

Summarising, we obtain [t6’s Lemma, the analogue for the Ito or stochastic
calculus of the chain rule for ordinary (Newton-Leibniz) calculus:

Theorem (It6’s Lemma). If X; has stochastic differential
dXt = Utdt + ‘/;deta XQ = Xy,

and f € CY2 then f = f(t, X;) has stochastic differential
1
df = (fi+Ufs+ §V2f22)dt + V fodB;.

That is, writing fo for f(0,xg), the initial value of f,

f(taXt>>:f0+/0 (f1+Uf2+%V2f22)dt+/0 VdeB



