m3a22l22tex
Lecture 22 30.11.2015
Schauder functions (ctd). We see that

$$
\int_{0}^{t} H(u) d u=\frac{1}{2} \Delta(t)
$$

and similarly

$$
\int_{0}^{t} H_{n}(u) d u=\lambda_{n} \Delta_{n}(t)
$$

where $\lambda_{0}=1$ and for $n \geq 1$,

$$
\lambda_{n}=\frac{1}{2} \times 2^{-j / 2} \quad\left(n=2^{j}+k \geq 1\right)
$$

The Schauder system $\left(\Delta_{n}\right)$ is again a complete orthogonal system on $L^{2}[0,1]$. We can now formulate the next result; for proof, see the references above.

Theorem (PWZ theorem: Paley-Wiener-Zygmund, 1933). For $\left(Z_{n}\right)_{0}^{\infty}$ independent $N(0,1)$ random variables, λ_{n}, Δ_{n} as above,

$$
W_{t}:=\sum_{n=0}^{\infty} \lambda_{n} Z_{n} \Delta_{n}(t)
$$

converges uniformly on $[0,1]$, a.s. The process $W=\left(W_{t}: t \in[0,1]\right)$ is Brownian motion.

Thus the above description does indeed define a stochastic process $X=$ $\left(X_{t}\right)_{t \in[0,1]}$ on $\left(C[0,1], \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$. The construction gives X on $C[0, n]$ for each $n=1,2, \cdots$, and combining these: X exists on $C[0, \infty)$. It is also unique (a stochastic process is uniquely determined by its finite-dimensional distributions and the restriction to path-continuity).

No construction of Brownian motion is easy: one needs both some work and some knowledge of measure theory. But existence is really all we need, and we assume this. For background, see any measure-theoretic text on stochastic processes. The classic is Doob's book, quoted above (see VIII. 2 there). Excellent modern texts include Karatzas \& Shreve [KS] (see particularly $\S 2.2-4$ for construction and $\S 5.8$ for applications to economics), Revuz \& Yor [RY], Rogers \& Williams [RW1] (Ch. 1), [RW2] Itô calculus - below).

We shall henceforth denote standard Brownian motion $B M(\mathbb{R})$ - or just $B M$ for short - by $B=\left(B_{t}\right)$ (B for Brown), though $W=\left(W_{t}\right)$ (W for Wiener) is also common. Standard Brownian motion $B M\left(\mathbb{R}^{d}\right)$ in d dimensions is defined by $B(t):=\left(B_{1}(t), \cdots, B_{d}(t)\right)$, where B_{1}, \cdots, B_{d} are independent standard Brownian motions in one dimension (independent copies of $B M(\mathbb{R}))$.

Zeros.

It can be shown that Brownian motion oscillates:

$$
\limsup _{t \rightarrow \infty} X_{t}=+\infty, \quad \liminf _{t \rightarrow \infty} X_{t}=-\infty \quad \text { a.s. }
$$

Hence, for every n there are zeros (times t with $X_{t}=0$) of X with $t \geq n$ (indeed, infinitely many such zeros). So if

$$
Z:=\left\{t \geq 0: X_{t}=0\right\}
$$

denotes the zero-set of $B M(\mathbb{R})$:

1. Z is an infinite set.

Next, if t_{n} are zeros and $t_{n} \rightarrow t$, then by path-continuity $B\left(t_{n}\right) \rightarrow B(t)$; but $B\left(t_{n}\right)=0$, so $B(t)=0$:
2. Z is a closed set (Z contains its limit points).

Less obvious are the next two properties:
3. Z is a perfect set: every point $t \in Z$ is a limit point of points in Z. So there are infinitely many zeros in every neighbourhood of every zero (so the paths must oscillate amazingly fast!).
4. Z is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, the diagram above (or any other diagram!) grossly distorts Z: it is impossible to draw a realistic picture of a Brownian path.

Brownian Scaling.

For each $c \in(0, \infty), X\left(c^{2} t\right)$ is $N\left(0, c^{2} t\right)$, so $X_{c}(t):=c^{-1} X\left(c^{2} t\right)$ is $N(0, t)$. Thus X_{c} has all the defining properties of a Brownian motion (check). So, X_{c} IS a Brownian motion:

Theorem. If X is $B M$ and $c>0, X_{c}(t):=c^{-1} X\left(c^{2} t\right)$, then X_{c} is again a BM.

Corollary. X is self-similar (reproduces itself under scaling), so a Brownian path $X($.$) is a fractal. So too is the zero-set Z$.

Brownian motion owes part of its importance to belonging to all the important classes of stochastic processes: it is (strong) Markov, a (continuous) martingale, Gaussian, a diffusion, a Lévy process (process with stationary independent increments), etc.

§4. Quadratic Variation (QV) of Brownian Motion; Itô's Lemma

Recall that for $\xi N\left(\mu, \sigma^{2}\right), \xi$ has moment-generating function (MGF)

$$
M(t):=E \exp \{t \xi\}=\exp \left\{\mu t+\frac{1}{2} \sigma^{2} t^{2}\right\} .
$$

Take $\mu=0$ below; for $\xi N\left(0, \sigma^{2}\right)$,

$$
\begin{aligned}
M(t):=E \exp \{t \xi\} & =\exp \left\{\frac{1}{2} \sigma^{2} t^{2}\right\} \\
& =1+\frac{1}{2} \sigma^{2} t^{2}+\frac{1}{2!}\left(\frac{1}{2} \sigma^{2} t^{2}\right)^{2}+O\left(t^{6}\right) \\
& =1+\frac{1}{2!} \sigma^{2} t^{2}+\frac{3}{4!} \sigma^{4} t^{4}+O\left(t^{6}\right) .
\end{aligned}
$$

So as the Taylor coefficients of the MGF are the moments (hence the name MGF!),
$E\left(\xi^{2}\right)=\operatorname{var} \xi=\sigma^{2}, \quad E\left(\xi^{4}\right)=3 \sigma^{4}, \quad$ so $\quad \operatorname{var}\left(\xi^{2}\right)=E\left(\xi^{4}\right)-\left[E\left(\xi^{2}\right)\right]^{2}=2 \sigma^{4}$.
For $B B M$, this gives in particular

$$
E B_{t}=0, \quad \operatorname{var} B_{t}=t, \quad E\left[\left(B_{t}\right)^{2}\right]=t, \quad \operatorname{var}\left[\left(B_{t}\right)^{2}\right]=2 t^{2} .
$$

In particular, for $t>0$ small, this shows that the variance of B_{t}^{2} is negligible compared with its expected value. Thus, the randomness in B_{t}^{2} is negligible compared to its mean for t small.

This suggests that if we take a fine enough partition \mathcal{P} of $[0, T]$ - a finite set of points

$$
0=t_{0}<t_{1}<\cdots<t_{k}=T
$$

with $|\mathcal{P}|:=\max \left|t_{i}-t_{i-1}\right|$ small enough - then writing

$$
\Delta B\left(t_{i}\right):=B\left(t_{i}\right)-B\left(t_{i-1}\right), \quad \Delta t_{i}:=t_{i}-t_{i-1},
$$

$\Sigma\left(\Delta B\left(t_{i}\right)\right)^{2}$ will closely resemble $\Sigma E\left[\left(\Delta B\left(t_{i}\right)^{2}\right]\right.$, which is $\Sigma \Delta t_{i}=\Sigma\left(t_{i}-\right.$ $\left.t_{i-1}\right)=T$. This is in fact true a.s.:

$$
\Sigma\left(\Delta B\left(t_{i}\right)\right)^{2} \rightarrow \Sigma \Delta t_{i}=T \quad \text { as } \quad \max \left|t_{i}-t_{i-1}\right| \rightarrow 0
$$

This limit is called the quadratic variation V_{T}^{2} of B over $[0, T]$:
Theorem. The quadratic variation of a Brownian path over $[0, T]$ exists and equals T, a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L7,8.
If we increase t by a small amount to $t+d t$, the increase in the QV can be written symbolically as $\left(d B_{t}\right)^{2}$, and the increase in t is $d t$. So, formally we may summarise the theorem as

$$
\left(d B_{t}\right)^{2}=d t
$$

Suppose now we look at the ordinary variation $\Sigma\left|\Delta B_{t}\right|$, rather than the quadratic variation $\Sigma\left(\Delta B_{t}\right)^{2}$. Then instead of $\Sigma\left(\Delta B_{t}\right)^{2} \sim \Sigma \Delta t \sim t$, we get $\Sigma\left|\Delta B_{t}\right| \sim \Sigma \sqrt{\Delta t}$. Now for Δt small, $\sqrt{\Delta t}$ is of a larger order of magnitude that Δt. So if $\Sigma \Delta t=t$ converges, $\Sigma \sqrt{\Delta t}$ diverges to $+\infty$. This suggests what is in fact true - the

Corollary. The paths of Brownian motion are of infinite variation - their variation is $+\infty$ on every interval, a.s.

The QV result above leads to Lévy's 1948 result, the Martingale Characterization of BM . Recall that B_{t} is a continuous martingale with respect to its natural filtration $\left(\mathcal{F}_{t}\right)$ and with $\mathrm{QV} t$. There is a remarkable converse; we give two forms.

Theorem (Lévy; Martingale Characterization of Brownian Motion). If M is any continuous local $\left(\mathcal{F}_{t}\right)$-martingale with $M_{0}=0$ and quadratic variation t, then M is an $\left(\mathcal{F}_{t}\right)$-Brownian motion.

Theorem (Lévy). If M is any continuous $\left(\mathcal{F}_{t}\right)$-martingale with $M_{0}=0$ and $M_{t}^{2}-t$ a martingale, then M is an $\left(\mathcal{F}_{t}\right)$-Brownian motion.

For proof, see e.g. [RW1], I.2.

