m3a22l22tex Lecture 22 30.11.2015 Schauder functions (ctd). We see that

$$\int_0^t H(u)du = \frac{1}{2}\Delta(t),$$

and similarly

$$\int_0^t H_n(u)du = \lambda_n \Delta_n(t),$$

where $\lambda_0 = 1$ and for $n \ge 1$,

$$\lambda_n = \frac{1}{2} \times 2^{-j/2}$$
 $(n = 2^j + k \ge 1).$

The Schauder system (Δ_n) is again a complete orthogonal system on $L^2[0, 1]$. We can now formulate the next result; for proof, see the references above.

Theorem (PWZ theorem: Paley-Wiener-Zygmund, 1933). For $(Z_n)_0^{\infty}$ independent N(0, 1) random variables, λ_n , Δ_n as above,

$$W_t := \sum_{n=0}^{\infty} \lambda_n Z_n \Delta_n(t)$$

converges uniformly on [0, 1], a.s. The process $W = (W_t : t \in [0, 1])$ is Brownian motion.

Thus the above description does indeed define a stochastic process $X = (X_t)_{t \in [0,1]}$ on $(C[0,1], \mathcal{F}, (\mathcal{F}_t), P)$. The construction gives X on C[0,n] for each $n = 1, 2, \cdots$, and combining these: X exists on $C[0,\infty)$. It is also unique (a stochastic process is uniquely determined by its finite-dimensional distributions and the restriction to path-continuity).

No construction of Brownian motion is easy: one needs both some work and some knowledge of measure theory. But *existence* is really all we need, and we assume this. For background, see any measure-theoretic text on stochastic processes. The classic is Doob's book, quoted above (see VIII.2 there). Excellent modern texts include Karatzas & Shreve [KS] (see particularly §2.2-4 for construction and §5.8 for applications to economics), Revuz & Yor [RY], Rogers & Williams [RW1] (Ch. 1), [RW2] Itô calculus – below). We shall henceforth denote standard Brownian motion $BM(\mathbb{R})$ – or just BM for short – by $B = (B_t)$ (B for Brown), though $W = (W_t)$ (W for Wiener) is also common. Standard Brownian motion $BM(\mathbb{R}^d)$ in d dimensions is defined by $B(t) := (B_1(t), \dots, B_d(t))$, where B_1, \dots, B_d are independent standard Brownian motions in one dimension (independent copies of $BM(\mathbb{R})$).

Zeros.

It can be shown that Brownian motion oscillates:

 $\limsup_{t\to\infty} X_t = +\infty, \qquad \liminf_{t\to\infty} X_t = -\infty \qquad a.s.$

Hence, for every n there are zeros (times t with $X_t = 0$) of X with $t \ge n$ (indeed, infinitely many such zeros). So if

$$Z := \{t \ge 0 : X_t = 0\}$$

denotes the zero-set of $BM(\mathbb{R})$:

1. Z is an *infinite* set.

Next, if t_n are zeros and $t_n \to t$, then by path-continuity $B(t_n) \to B(t)$; but $B(t_n) = 0$, so B(t) = 0:

2. Z is a *closed* set (Z contains its limit points).

Less obvious are the next two properties:

3. Z is a *perfect* set: every point $t \in Z$ is a limit point of points in Z. So there are *infinitely many* zeros in *every* neighbourhood of *every* zero (so the paths must oscillate amazingly fast!).

4. Z is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, the diagram above (or any other diagram!) grossly distorts Z: it is impossible to draw a realistic picture of a Brownian path.

Brownian Scaling.

For each $c \in (0, \infty)$, $X(c^2t)$ is $N(0, c^2t)$, so $X_c(t) := c^{-1}X(c^2t)$ is N(0, t). Thus X_c has all the defining properties of a Brownian motion (check). So, X_c **IS** a Brownian motion:

Theorem. If X is BM and c > 0, $X_c(t) := c^{-1}X(c^2t)$, then X_c is again a BM.

Corollary. X is *self-similar* (reproduces itself under scaling), so a Brownian path X(.) is a *fractal*. So too is the zero-set Z.

Brownian motion owes part of its importance to belonging to *all* the important classes of stochastic processes: it is (strong) Markov, a (continuous) martingale, Gaussian, a diffusion, a Lévy process (process with stationary independent increments), etc.

§4. Quadratic Variation (QV) of Brownian Motion; Itô's Lemma

Recall that for $\xi N(\mu, \sigma^2)$, ξ has moment-generating function (MGF)

$$M(t) := E \exp\{t\xi\} = \exp\{\mu t + \frac{1}{2}\sigma^2 t^2\}.$$

Take $\mu = 0$ below; for $\xi N(0, \sigma^2)$,

$$M(t) := E \exp\{t\xi\} = \exp\{\frac{1}{2}\sigma^2 t^2\}$$
$$= 1 + \frac{1}{2}\sigma^2 t^2 + \frac{1}{2!}(\frac{1}{2}\sigma^2 t^2)^2 + O(t^6)$$
$$= 1 + \frac{1}{2!}\sigma^2 t^2 + \frac{3}{4!}\sigma^4 t^4 + O(t^6).$$

So as the Taylor coefficients of the MGF are the moments (hence the name MGF!),

$$E(\xi^2) = var\xi = \sigma^2$$
, $E(\xi^4) = 3\sigma^4$, so $var(\xi^2) = E(\xi^4) - [E(\xi^2)]^2 = 2\sigma^4$

For B BM, this gives in particular

$$EB_t = 0,$$
 $varB_t = t,$ $E[(B_t)^2] = t,$ $var[(B_t)^2] = 2t^2.$

In particular, for t > 0 small, this shows that the variance of B_t^2 is negligible compared with its expected value. Thus, the randomness in B_t^2 is negligible compared to its mean for t small.

This suggests that if we take a fine enough partition \mathcal{P} of [0, T] – a finite set of points

$$0 = t_0 < t_1 < \dots < t_k = T$$

with $|\mathcal{P}| := \max |t_i - t_{i-1}|$ small enough – then writing

$$\Delta B(t_i) := B(t_i) - B(t_{i-1}), \qquad \Delta t_i := t_i - t_{i-1},$$

 $\Sigma(\Delta B(t_i))^2$ will closely resemble $\Sigma E[(\Delta B(t_i)^2])$, which is $\Sigma \Delta t_i = \Sigma(t_i - t_{i-1}) = T$. This is in fact true a.s.:

$$\Sigma(\Delta B(t_i))^2 \to \Sigma \Delta t_i = T$$
 as $\max |t_i - t_{i-1}| \to 0.$

This limit is called the *quadratic variation* V_T^2 of B over [0, T]:

Theorem. The quadratic variation of a Brownian path over [0, T] exists and equals T, a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L7,8.

If we increase t by a small amount to t + dt, the increase in the QV can be written symbolically as $(dB_t)^2$, and the increase in t is dt. So, formally we may summarise the theorem as

$$\left(dB_t\right)^2 = dt.$$

Suppose now we look at the ordinary variation $\Sigma |\Delta B_t|$, rather than the quadratic variation $\Sigma (\Delta B_t)^2$. Then instead of $\Sigma (\Delta B_t)^2 \sim \Sigma \Delta t \sim t$, we get $\Sigma |\Delta B_t| \sim \Sigma \sqrt{\Delta t}$. Now for Δt small, $\sqrt{\Delta t}$ is of a larger order of magnitude that Δt . So if $\Sigma \Delta t = t$ converges, $\Sigma \sqrt{\Delta t}$ diverges to $+\infty$. This suggests – what is in fact true – the

Corollary. The paths of Brownian motion are of infinite variation - their variation is $+\infty$ on every interval, a.s.

The QV result above leads to Lévy's 1948 result, the Martingale Characterization of BM. Recall that B_t is a continuous martingale with respect to its natural filtration (\mathcal{F}_t) and with QV t. There is a remarkable converse; we give two forms.

Theorem (Lévy; Martingale Characterization of Brownian Motion). If M is any continuous local (\mathcal{F}_t) -martingale with $M_0 = 0$ and quadratic variation t, then M is an (\mathcal{F}_t) -Brownian motion.

Theorem (Lévy). If M is any continuous (\mathcal{F}_t) -martingale with $M_0 = 0$ and $M_t^2 - t$ a martingale, then M is an (\mathcal{F}_t) -Brownian motion.

For proof, see e.g. [RW1], I.2.