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Lecture 22 30.11.2015
Schauder functions (ctd). We see that∫ t

0

H(u)du =
1

2
∆(t),

and similarly ∫ t

0

Hn(u)du = λn∆n(t),

where λ0 = 1 and for n ≥ 1,

λn =
1

2
× 2−j/2 (n = 2j + k ≥ 1).

The Schauder system (∆n) is again a complete orthogonal system on L2[0, 1].
We can now formulate the next result; for proof, see the references above.

Theorem (PWZ theorem: Paley-Wiener-Zygmund, 1933). For (Zn)
∞
0

independent N(0, 1) random variables, λn, ∆n as above,

Wt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process W = (Wt : t ∈ [0, 1]) is Brow-
nian motion.

Thus the above description does indeed define a stochastic process X =
(Xt)t∈[0,1] on (C[0, 1],F , (Ft), P ). The construction gives X on C[0, n] for
each n = 1, 2, · · ·, and combining these: X exists on C[0,∞). It is also
unique (a stochastic process is uniquely determined by its finite-dimensional
distributions and the restriction to path-continuity).

No construction of Brownian motion is easy: one needs both some work
and some knowledge of measure theory. But existence is really all we need,
and we assume this. For background, see any measure-theoretic text on
stochastic processes. The classic is Doob’s book, quoted above (see VIII.2
there). Excellent modern texts include Karatzas & Shreve [KS] (see partic-
ularly §2.2-4 for construction and §5.8 for applications to economics), Revuz
& Yor [RY], Rogers & Williams [RW1] (Ch. 1), [RW2] Itô calculus – below).
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We shall henceforth denote standard Brownian motion BM(R) – or just
BM for short – by B = (Bt) (B for Brown), though W = (Wt) (W for
Wiener) is also common. Standard Brownian motion BM(Rd) in d dimen-
sions is defined by B(t) := (B1(t), · · · , Bd(t)), where B1, · · · , Bd are inde-
pendent standard Brownian motions in one dimension (independent copies of
BM(R)).
Zeros.

It can be shown that Brownian motion oscillates:

lim supt→∞Xt = +∞, lim inft→∞Xt = −∞ a.s.

Hence, for every n there are zeros (times t with Xt = 0) of X with t ≥ n
(indeed, infinitely many such zeros). So if

Z := {t ≥ 0 : Xt = 0}

denotes the zero-set of BM(R):
1. Z is an infinite set.
Next, if tn are zeros and tn → t, then by path-continuity B(tn) → B(t); but
B(tn) = 0, so B(t) = 0:
2. Z is a closed set (Z contains its limit points).
Less obvious are the next two properties:
3. Z is a perfect set: every point t ∈ Z is a limit point of points in Z. So
there are infinitely many zeros in every neighbourhood of every zero (so the
paths must oscillate amazingly fast!).
4. Z is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, the diagram above (or any other diagram!) grossly distorts
Z: it is impossible to draw a realistic picture of a Brownian path.
Brownian Scaling.

For each c ∈ (0,∞), X(c2t) is N(0, c2t), so Xc(t) := c−1X(c2t) is N(0, t).
Thus Xc has all the defining properties of a Brownian motion (check). So,
Xc IS a Brownian motion:

Theorem. If X is BM and c > 0, Xc(t) := c−1X(c2t), then Xc is again a
BM .

Corollary. X is self-similar (reproduces itself under scaling), so a Brownian
path X(.) is a fractal. So too is the zero-set Z.
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Brownian motion owes part of its importance to belonging to all the im-
portant classes of stochastic processes: it is (strong) Markov, a (continuous)
martingale, Gaussian, a diffusion, a Lévy process (process with stationary
independent increments), etc.

§4. Quadratic Variation (QV) of Brownian Motion; Itô’s Lemma

Recall that for ξ N(µ, σ2), ξ has moment-generating function (MGF)

M(t) := E exp{tξ} = exp{µt+ 1

2
σ2t2}.

Take µ = 0 below; for ξ N(0, σ2),

M(t) := E exp{tξ} = exp{1
2
σ2t2}

= 1 +
1

2
σ2t2 +

1

2!
(
1

2
σ2t2)

2

+O(t6)

= 1 +
1

2!
σ2t2 +

3

4!
σ4t4 +O(t6).

So as the Taylor coefficients of the MGF are the moments (hence the name
MGF!),

E(ξ2) = varξ = σ2, E(ξ4) = 3σ4, so var(ξ2) = E(ξ4)−[E(ξ2)]
2
= 2σ4.

For B BM , this gives in particular

EBt = 0, varBt = t, E[(Bt)
2] = t, var[(Bt)

2] = 2t2.

In particular, for t > 0 small, this shows that the variance of B2
t is negligible

compared with its expected value. Thus, the randomness in B2
t is negligible

compared to its mean for t small.
This suggests that if we take a fine enough partition P of [0, T ] – a finite

set of points
0 = t0 < t1 < · · · < tk = T

with |P| := max |ti − ti−1| small enough – then writing

∆B(ti) := B(ti)−B(ti−1), ∆ti := ti − ti−1,
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Σ(∆B(ti))
2 will closely resemble ΣE[(∆B(ti)

2], which is Σ∆ti = Σ(ti −
ti−1) = T . This is in fact true a.s.:

Σ(∆B(ti))
2 → Σ∆ti = T as max |ti − ti−1| → 0.

This limit is called the quadratic variation V 2
T of B over [0, T ]:

Theorem. The quadratic variation of a Brownian path over [0, T ] exists and
equals T , a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L7,8.
If we increase t by a small amount to t + dt, the increase in the QV can

be written symbolically as (dBt)
2, and the increase in t is dt. So, formally

we may summarise the theorem as

(dBt)
2 = dt.

Suppose now we look at the ordinary variation Σ|∆Bt|, rather than the
quadratic variation Σ(∆Bt)

2. Then instead of Σ(∆Bt)
2 ∼ Σ∆t ∼ t, we get

Σ|∆Bt| ∼ Σ
√
∆t. Now for ∆t small,

√
∆t is of a larger order of magnitude

that ∆t. So if Σ∆t = t converges, Σ
√
∆t diverges to +∞. This suggests –

what is in fact true – the

Corollary. The paths of Brownian motion are of infinite variation - their
variation is +∞ on every interval, a.s.

The QV result above leads to Lévy’s 1948 result, the Martingale Char-
acterization of BM. Recall that Bt is a continuous martingale with respect
to its natural filtration (Ft) and with QV t. There is a remarkable converse;
we give two forms.

Theorem (Lévy; Martingale Characterization of Brownian Mo-
tion). If M is any continuous local (Ft)-martingale with M0 = 0 and
quadratic variation t, then M is an (Ft)-Brownian motion.

Theorem (Lévy). If M is any continuous (Ft)-martingale with M0 = 0
and M2

t − t a martingale, then M is an (Ft)-Brownian motion.

For proof, see e.g. [RW1], I.2.
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