
m3a22l21tex
Lecture 21 27.10.2015
Filtrations and insider trading (ctd).

Again necessarily, many people are involved in major business projects
and decisions (an important example: mergers and acquisitions, or M&A)
involving publicly quoted companies. Frequently, this involves price-sensitive
information. People in this position are – rightly – prohibited by law from
profiting by it directly, by trading on their own account, in publicly quoted
stocks but using private information. This is rightly regarded as theft at the
expense of the investing public.1 Instead, those involved in M&A etc. should
seek to benefit legitimately (and indirectly) – enhanced career prospects,
commission or fees, bonuses etc.

The regulatory authorities (Securities and Exchange Commission – SEC
– in US; Financial Conduct Authority (FCA) and Prudential Regulation Au-
thority (PRA, part of the Bank of England (BoE) in UK) monitor all trading
electronically. Their software alerts them to patterns of suspicious trades.
The software design (necessarily secret, in view of its value to criminals)
involves all the necessary elements of Mathematical Finance in exaggerated
form: economic and financial insight, plus: mathematics; statistics (espe-
cially pattern recognition, data mining and machine learning); numerics and
computation.

§2. Classes of Processes.
1. Martingales.

The martingale property in continuous time is just that suggested by the
discrete-time case:

E[Xt|Fs] = Xs (s < t),

and similarly for submartingales and supermartingales. There are regular-
ization results, under which one can take Xt right-continuous in t. Among
the contrasts with the discrete case, we mention that the Doob-Meyer de-
composition, easy in discrete time (III.8), is a deep result in continuous time.
For background, see e.g.
MEYER, P.-A. (1966): Probabilities and potentials. Blaisdell
- and subsequent work by Meyer and the French school (Dellacherie & Meyer,
Probabilités et potentiel, I-V, etc.

1The plot of the film Wall Street revolves round such a case, and is based on real life
– recommended!
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2. Gaussian Processes.
Recall the multivariate normal distribution N(µ,Σ) in n dimensions. If

µ ∈ Rn, Σ is a non-negative definite n×n matrix, X has distribution N(µ,Σ)
if it has characteristic function

ϕX(t) := E exp{itT .X} = exp{itT .µ− 1

2
tTΣt} (t ∈ Rn).

If further Σ is positive definite (so non-singular), X has density (Edgeworth’s
Theorem of 1893: F. Y. Edgeworth (1845-1926), English statistician)

fX(x) =
1

(2π)
1
2
n|Σ|

1
2

exp{−1

2
(x− µ)TΣ−1(x− µ)}.

A process X = (Xt)t≥0 is Gaussian if all its finite-dimensional distribu-
tions are Gaussian. Such a process can be specified by:
(i) a measurable function µ = µ(t) with EXt = µ(t),
(ii) a non-negative definite function σ(s, t) with

σ(s, t) = cov(Xs, Xt).

Gaussian processes have many interesting properties. Among these, we
quote Belayev’s dichotomy: with probability one, the paths of a Gaussian
process are either continuous, or extremely pathological: for example, un-
bounded above and below on any time-interval, however short. Naturally,
we shall confine attention in this course to continuous Gaussian processes.
3. Markov Processes.

X is Markov if for each t, each A ∈ σ(Xs : s > t) (the ‘future’) and
B ∈ σ(Xs : s < t) (the ‘past’),

P (A|Xt, B) = P (A|Xt).

That is, if you know where you are (at time t), how you got there doesn’t
matter so far as predicting the future is concerned – equivalently, past and
future are conditionally independent given the present.

The same definition applied to Markov processes in discrete time.
X is said to be strong Markov if the above holds with the fixed time t

replaced by a stopping time T (a random variable). This is a real restriction
of the Markov property in continuous time (though not in discrete time) –
another instance of the difference between the two.
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4. Diffusions.
A diffusion is a path-continuous strong-Markov process such that for each

time t and state x the following limits exist:

µ(t, x) := limh↓0
1

h
E[(Xt+h −Xt)|Xt = x],

σ2(t, x) := limh↓0
1

h
E[(Xt+h −Xt)

2|Xt = x].

Then µ(t, x) is called the drift, σ2(t, x) the diffusion coefficient. Then p(t, x, y),
the density of transitions from x to y in time t, satisfies the parabolic PDE

Lp = ∂p/∂t, L :=
1

2
σ2D2 + µ(x)D, D := ∂/∂x.

Brownian motion (below) is the case σ = 1, µ = 0, and gives the heat equa-
tion (L = 1

2
D2 in one dimension, half the Laplacian ∆ in higher dimensions).

§3. Brownian Motion.
The Scottish botanist Robert Brown observed pollen particles in suspen-

sion under a microscope in 1828 and 1829 (though this had been observed
before),2 and observed that they were in constant irregular motion.

In 1900 L. Bachelier considered Brownian motion a possible model for
stock-market prices:
BACHELIER, L. (1900): Théorie de la spéculation. Ann. Sci. Ecole Nor-
male Supérieure 17, 21-86
– the first time Brownian motion had been used to model financial or eco-
nomic phenomena, and before a mathematical theory had been developed.

In 1905 Albert Einstein considered Brownian motion as a model of parti-
cles in suspension, and used it to estimate Avogadro’s number (N ∼ 6×1023),
based on the diffusion coefficient D in the Einstein relation

varXt = Dt (t > 0).

In 1923 Norbert WIENER defined and constructed Brownian motion rig-
orously for the first time. The resulting stochastic process is often called the
Wiener process in his honour, and its probability measure (on path-space) is

2The Roman author Lucretius observed this phenomenon in the gaseous phase – dust
particles dancing in sunbeams – in antiquity: De rerum naturae, c. 50 BC.
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called Wiener measure.
We define standard Brownian motion on R, BM or BM(R), to be a

stochastic process X = (Xt)t≥0 such that
1. X0 = 0,
2. X has independent increments: Xt+u−Xt is independent of σ(Xs : s ≤ t)
for u ≥ 0,
3. X has stationary increments: the law of Xt+u −Xt depends only on u,
4. X has Gaussian increments: Xt+u−Xt is normally distributed with mean
0 and variance u,

Xt+u −Xt ∼ N(0, u),

5. X has continuous paths: Xt is a continuous function of t, i.e. t 7→ Xt is
continuous in t.

For time t in a finite interval – [0, 1], say – we can use the following filtered
space: (i) Ω = C[0, 1], the space of all continuous functions on [0, 1]; (ii) the
points ω ∈ Ω are thus random functions, and we use the coordinate mappings:
Xt, or Xt(ω), = ωt; (iii) the filtration is given by Ft := σ(Xs : 0 ≤ s ≤ t),
F := F1; (iv) P is the measure on (Ω,F) with finite-dimensional distribu-
tions specified by the restriction that the increments Xt+u−Xt are stationary
independent Gaussian N(0, u).

Theorem (WIENER, 1923). Brownian motion exists.

The best way to prove this is by construction, and one that reveals some
properties. The proof that follows is originally due to Paley, Wiener and
Zygmund (1933) and Lévy (1948), but is re-written in the modern language
of wavelet expansions. We omit details; for these, see e.g. [BK] 5.3.1, or
SP L20-22. The Haar system (Hn) = (Hn(.)) is a complete orthonormal
system (cons) of functions in L2[0, 1]. The Schauder System ∆n) is obtained
by integrating the Haar system. Consider the triangular function (or ‘tent
function’)

∆(t) := 2t on [0,
1

2
), 2(1− t) on [

1

2
, 1], 0 else.

With ∆0(t) := t, ∆1(t) := ∆(t), define the nth Schauder function ∆n by

∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).

Note that ∆n has support [k/2j, (k + 1)/2j] (so is ‘localized’ on this dyadic
interval, which is small for n, j large).
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