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American puts (ctd).
5. Treat these values as ‘terminal node values’, and fill in the values one
time-step earlier by repeating Step 4 for this ‘reduced tree’.
6. Iterate. The value of the American put at time 0 is the value at the root -
the last node to be filled in. The ‘early-exercise region’ is the node set where
the early-exercise value is the higher; the rest is the ‘continuation region’.
Note. The above procedure is simple to describe and understand, and simple
to programme. It is laborious to implement numerically by hand, on exam-
ples big enough to be non-trivial. Numerical examples are worked through
in detail in [H1], 359-360 and [CR], 241-242.

Mathematically, the task remains of describing the continuation region -
the part of the tree where early exercise is not optimal. This is a classical
optimal stopping problem. No explicit solution is known (and presumably
there isn’t one). We will, however, connect the work above with that of III.7
[L13] on the Snell envelope. Consider the pricing of an American put, strike
price K, expiry N , in discrete time, with discount factor 1 + r per unit time
as earlier. Let Z = (Zn)

N
n=0 be the payoff on exercising at time n. We want

to price Zn, by Un say (to conform to our earlier notation), so as to avoid
arbitrage; again, we work backwards in time. The recursive step is

Un−1 = max(Zn−1,
1

1 + r
E∗[Un|Fn−1]),

the first alternative on the right corresponding to early exercise, the second
to the discounted expectation under P ∗, as usual. Let Ũn = Un/(1 + r)n be
the discounted price of the American option. Then

Ũn−1 = max(Z̃n−1, E
∗[Ũn|Fn−1]) :

(Ũn) is the Snell envelope (III.7) of the discounted payoff process (Z̃n). So:
(i) a P ∗-supermartingale,
(ii) the smallest supermartingale dominating (Z̃n),
(iii) the solution of the optimal stopping problem for Z̃.
Note. One can use the Snell envelope to prove Merton’s theorem (equiva-
lence of American and European calls) without using arbitrage arguments.
For details see e.g. [BK, Th. 4.7.1 and Cor. 4.7.1].
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P -measure and P ∗− (or Q−) measure.
We use P and P ∗ in the above, as E and E∗ are convenient, but P and

Q when the emphasis is on Q, for brevity.
The measure P , the real (or real-world) probability measure, models the

uncertainty driving prices, which are indeed uncertain, thus allowing us to
bring mathematics to bear on financial problems. But P is difficult to get
at directly. By contrast, Q is more accessible: the market tells us about Q,
or more specifically, trading does. In addition, trading also tells us about
the volatility σ, via implied volatility, which we can infer from observing the
prices at which options are traded. So Q is certainly more accessible than P .
There is thus a sense in which it is Q, rather than P , which is the more real.

It is as well to bear all this in mind when looking at specific problems, par-
ticularly numerical ones. Now that we know the CRR binomial-tree model,
which gives us the Black-Scholes formula in discrete time (and hence also, by
the limiting argument above, the Black- Scholes formula in continuous time,
the main result of the course), we can recognise the ‘one-period, up or down’
model ($/SFr in I.8 L5, price of gold in Problems 5), though clearly artificial
and stylised, as a workable ‘building block’ of the whole theory. Because P
itself does not occur in the Black-Scholes formula(e), from a purely financial
point of view there is little need to try to construct more realistic, and so
more complicated, models of P . Instead, one can exploit what one can infer
about Q, which does occur in Black-Scholes, from seeing the prices at which
options trade.

From the economic point of view, it is the real world, the real economy,
and so the real probability measure P , that matters. The ‘Q-measure-eye
view of the world’ has a degree of artificiality, in so far as options do. One
can eat food, and needs to. One can’t eat options.

Where we are.
The course splits neatly into three parts: Ch. I, II [L 1-10] on background,

Ch. III, IV [L 11-20] on discrete time, and Ch. V, VI [L 20-30] on continuous
time. We have already seen the main ideas – and proved nearly everything
seen so far. In V, VI we gain the tremendous power of Itô (stochastic) cal-
culus (calculus is our most powerful weapon, in mathematics and science!),
and the ability to work in continuous time. What we lose is the ability to
prove so much and to see what is happening so clearly and so concretely.
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Chapter V. STOCHASTIC PROCESSES IN CONTINUOUS TIME

§1. Filtrations; Finite-Dimensional Distributions

The underlying set-up is as before, but now time is continuous rather
than discrete; thus the time-variable will be t ≥ 0 in place of n = 0, 1, 2, . . ..
The information available at time t is the σ-field Ft; the collection of these as
t ≥ 0 varies is the filtration, modelling the information flow. The underlying
probability space, endowed with this filtration, gives us the stochastic basis
(filtered probability space) on which we work,

We assume that the filtration is complete (contains all subsets of null-sets
as null-sets), and right-continuous: Ft = Ft+, i.e.

Ft = ∩s>tFs

(the ‘usual conditions’ – right-continuity and completeness – in Meyer’s ter-
minology).

A stochastic process X = (Xt)t≥0 is a family of random variables defined
on a filtered probability space with Xt Ft-measurable for each t: thus Xt is
known when Ft is known, at time t.

If {t1, · · · , tn} is a finite set of time-points in [0,∞), (Xt1 , · · · , Xtn), or
(X(t1), · · · , X(tn)) (for typographical convenience, we use both notations in-
terchangeably, with or without ω: Xt(ω), or X(t, ω)) is a random n-vector,
with a distribution, µ(t1, · · · , tn) say. The class of all such distributions as
{t1, · · · , tn} ranges over all finite subsets of [0,∞) is called the class of all
finite-dimensional distributions of X. These satisfy certain obvious consis-
tency conditions:
(i) deletion of one point ti can be obtained by ‘integrating out the unwanted
variable’, as usual when passing from joint to marginal distributions,
(ii) permutation of the ti permutes the arguments of the measure µ(t1, · · · , tn)
on Rn.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the DANIELL-KOLMOGOROV Theorem: P. J. Daniell in
1918, A. N. Kolmogorov in 1933).

Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives a stochastic process
X as a random function on [0,∞), i.e. a random variable on R[0,∞). This
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is a vast and unwieldy space; we shall usually be able to confine attention
to much smaller and more manageable spaces, of functions satisfying reg-
ularity conditions. The most important of these is continuity: we want to
be able to realise X = (Xt(ω))t≥0 as a random continuous function, i.e. a
member of C[0,∞); such a process X is called path-continuous (since the
map t → Xt(ω) is called the sample path, or simply path, given by ω) – or
more briefly, continuous. This is possible for the extremely important case of
Brownian motion (below), for example, and its relatives. Sometimes we need
to allow our random function Xt(ω) to have jumps. It is then customary,
and convenient, to require Xt to be right-continuous with left limits (rcll),
or càdlàg (continu à droite, limite à gauche) – i.e. to have X in the space
D[0,∞) of all such functions (the Skorohod space). This is the case, for in-
stance, for the Poisson process and its relatives.

General results on realisability – whether or not it is possible to realise,
or obtain, a process so as to have its paths in a particular function space –
are known, but it is usually better to construct the processes we need directly
on the function space on which they naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on results of
this type (separability, measurability, versions, regularization, ...) see e.g.
Doob’s classic book [D].

The continuous-time theory is technically much harder than the discrete-
time theory, for two reasons:
(i) questions of path-regularity arise in continuous time but not in discrete
time,
(ii) uncountable operations (like taking sup over an interval) arise in contin-
uous time. But measure theory is constructed using countable operations:
uncountable operations risk losing measurability.

Filtrations and Insider Trading
Recall that a filtration models an information flow. In our context, this

is the information flow on the basis of which market participants – traders,
investors etc. – make their decisions, and commit their funds and effort.
All this is information in the public domain – necessarily, as stock exchange
prices are publicly quoted.
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